To find the inverse of the function, <span> f(x) = 1/4x-12, first interchange the variables of x and y
x=1/4y-12, now solve for y
1/4y=x+12, multiply by 4 on both sides
y=4x+48
Thus, the inverse of the function</span><span> f(x) = 1/4x-12 is 4x+48
Hope this helps!</span>
Answer:
x=40
Step-by-step explanation:
2x+7+x-10+63=180
3x=120
x=40
Answer:
The exact answer in terms of radicals is ![x = 5*\sqrt[3]{25}](https://tex.z-dn.net/?f=x%20%3D%205%2A%5Csqrt%5B3%5D%7B25%7D)
The approximate answer is
(accurate to 5 decimal places)
===============================================
Work Shown:
Let ![y = \sqrt[5]{x^3}](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B5%5D%7Bx%5E3%7D)
So the equation reduces to -7 = 8-3y
Let's solve for y
-7 = 8-3y
8-3y = -7
-3y = -7-8 ... subtract 8 from both sides
-3y = -15
y = -15/(-3) ... divide both sides by -3
y = 5
-----------
Since
and y = 5, this means we can equate the two expressions and solve for x

![\sqrt[5]{x^3} = 5](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E3%7D%20%3D%205)
Raise both sides to the 5th power

Apply cube root to both sides
![x = \sqrt[3]{125*25}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7B125%2A25%7D)
![x = \sqrt[3]{125}*\sqrt[3]{25}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7B125%7D%2A%5Csqrt%5B3%5D%7B25%7D)
![x = \sqrt[3]{5^3}*\sqrt[3]{25}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7B5%5E3%7D%2A%5Csqrt%5B3%5D%7B25%7D)
![x = 5*\sqrt[3]{25}](https://tex.z-dn.net/?f=x%20%3D%205%2A%5Csqrt%5B3%5D%7B25%7D)

Answer:
Step-by-step explanation:
hello :
ax+b =4x+9 so a=4 and b=9
2p+6a=$14
3p+9a=$21
3p+9a=21
Subtract 9a
3p=21-9a
divide all by 3
p=7-3a
plug it into start equations
2p+6a=14
2(7-3a)+6a=14
14-6a....+6a=14
this zeroes out...