Answer:
5. 4
6. 1
7. 2
8. -1
Step-by-step explanation:
Coefficient is usually the whole number in the beginning. I believe 5-7 are correct. I'm a little iffy about 8. Good luck!
The question is incomplete. The complete question is :
Let X be a random variable with probability mass function
P(X =1) =1/2, P(X=2)=1/3, P(X=5)=1/6
(a) Find a function g such that E[g(X)]=1/3 ln(2) + 1/6 ln(5). You answer should give at least the values g(k) for all possible values of k of X, but you can also specify g on a larger set if possible.
(b) Let t be some real number. Find a function g such that E[g(X)] =1/2 e^t + 2/3 e^(2t) + 5/6 e^(5t)
Solution :
Given :

a). We know :
![$E[g(x)] = \sum g(x)p(x)$](https://tex.z-dn.net/?f=%24E%5Bg%28x%29%5D%20%3D%20%5Csum%20g%28x%29p%28x%29%24)
So, 

Therefore comparing both the sides,


Also, 
b).
We known that ![$E[g(x)] = \sum g(x)p(x)$](https://tex.z-dn.net/?f=%24E%5Bg%28x%29%5D%20%3D%20%5Csum%20g%28x%29p%28x%29%24)
∴ 

Therefore on comparing, we get

∴ 
Answer:
Step-by-step explanation: the answer is x= 3
+5, -3
+5
If <em>y</em> = <em>y(x)</em>, then the slope of the tangent line to (1, 1) is equal to the value of the derivative d<em>y</em>/d<em>x</em> when <em>x</em> = 1 and <em>y</em> = 1.
Compute the derivative using implicit differentiation:
d/d<em>x</em> [<em>xy</em> ^2 + <em>y</em>] = d/d<em>x</em> [2<em>x</em>]
d/d<em>x</em> [<em>xy</em> ^2] + d/d<em>x</em> [<em>y</em>] = 2 d/d<em>x</em> [<em>x</em>]
(<em>x</em> d/d<em>x</em> [<em>y</em> ^2] + d/d<em>x</em> [<em>x</em>] <em>y</em> ^2) + d<em>y</em>/d<em>x</em> = 2
2<em>xy</em> d<em>y</em>/d<em>x</em> + <em>y</em> ^2 + d<em>y</em>/d<em>x</em> = 2
(2<em>xy</em> + 1) d<em>y</em>/d<em>x</em> = 2 - <em>y</em> ^2
d<em>y</em>/d<em>x</em> = (2 - <em>y</em> ^2) / (2<em>xy</em> + 1)
Plug in <em>x</em> = 1 and <em>y</em> = 1 :
slope = d<em>y</em>/d<em>x</em> = (2 - 1^2) / (2*1*1 + 1) = 1/3
Now use the point-slope formula to get the equation of the line:
<em>y</em> - 1 = 1/3 (<em>x</em> - 1)
<em>y</em> = <em>x</em>/3 + 2/3