Answer:
A)
= 1,
= 4
B)
= 2
+ 2
C)
Step-by-step explanation:
For n ≥ 1 ,
S is a set containing 2^n distinct real numbers
an = no of comparisons to be made between pairs of elements of s
A)
= no of comparisons in set (s)
that contains 2 elements = 1
= no of comparisons in set (s) containing 4 = 4
B) an = 2a
+ 2
C) using the recurrence relation
a
= 2a
+ 2
substitute the following values 2,3,4 .......... for n
a
= 2a
+ 2
a
= 2a
+ 2 = ![2^{2} a_{1} + 2^{2} + 2](https://tex.z-dn.net/?f=2%5E%7B2%7D%20a_%7B1%7D%20%20%2B%202%5E%7B2%7D%20%2B%202)
a
= ![2a_{3} + 2 = 2(2^{2}a + 2^{2} + 2 ) + 2](https://tex.z-dn.net/?f=2a_%7B3%7D%20%2B%202%20%20%3D%202%282%5E%7B2%7Da%20%2B%202%5E%7B2%7D%20%2B%202%20%29%20%2B%202)
=
---------------- (x)
since 2^1 + 2^2 + 2^3 + ...... + 2^n-1 = ![\frac{2(2^{n-1 }-1) }{2-1}](https://tex.z-dn.net/?f=%5Cfrac%7B2%282%5E%7Bn-1%20%7D-1%29%20%7D%7B2-1%7D)
applying the sum formula for G.P
Note ; a = 2, r =2 , n = n-1
a1 = 1
so equation x becomes
![a_{n} = 2^{n-1} + 2^n - 2\\a_{n} = 2^n + 2^{n-1} - 2](https://tex.z-dn.net/?f=a_%7Bn%7D%20%3D%202%5E%7Bn-1%7D%20%2B%202%5En%20-%202%5C%5Ca_%7Bn%7D%20%3D%202%5En%20%2B%202%5E%7Bn-1%7D%20-%202)