Answer:
<em>Answer is</em><em> </em><em>given</em><em> </em><em>below</em><em>. </em><em>If</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>any doubts </em><em>write</em><em> </em><em>in comments box</em><em>. </em>
Step-by-step explanation:
<em>
</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>HAVE A NICE DAY</em><em>!</em>
<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>
Answer:
A
Step-by-step explanation:
18=1×18=18
2×9=18
. 3×6=18
6×3=18
9×2=18
18×1=18
30=1×30=30
2×15=30
3×10=30
5×6=30
6×5=30
10×3=30
15×2=30
30×1=30
If there are 30.48cm in a foot and 12cm represents 102 feet then 12 cm represents 3109cm or 12:3109. Divide both sides by 12 to get the scale and it is: 1:259, the scale is 259.
Hope this helps :)
Answer:
P(5, 1)
Step-by-step explanation:
Segment AB is to be partitioned in a ratio of 5:3. That means the ratio of the lengths of AP to PB is 5:3. We need to find the ratio of the lengths of AP to AB.
AP/PB = 5/3
By algebra:
PB/AP = 3/5
By a rule of proportions:
(PB + AP)/AP = (3 + 5)/5
PB + AP = AP + PB = AB
AB/AP = 8/5
AP/AB = 5/8
The first part of the segment is 5/8 of the length of the segment, and the second part of the segment has length of 3/8 of the length of segment AB.
Point P is located 5/8 of the distance from point A to point B. The x-coordinate of point P is 5/8 of the difference in x-coordinates added to the x-coordinate of point A. The y-coordinate of point P is 5/8 of the difference in y-coordinates added to the y-coordinate of point A.
x-coordinate:
difference in coordinates: |14 - (-10)| = |14 + 10| = 24
5/8 of 24 = 5/8 * 24 = 15
Add 15 to the x-coordinate of point A: -10 + 15 = 5
x-coordinate of point P: 5
y-coordinate:
difference in coordinates: |4 - (-4)| = |4 + 4| = 8
5/8 of 8 = 5/8 * 8 = 5
Add 5 to the y-coordinate of point A: -4 + 5 = 1
y-coordinate of point P: 1
Answer: P(5, 1)
Answer:
If M is midpoint of AB, then
AM=MB
4x-5= 2x+11
2x=16
x=8
AM= 4x-5
=4(8)-5
=32-5
=27
BM=2x+11
=2(8)+11
=16+11
=27
Hope it helps:-)