My answer will be because these characteristics intervene in the capture and assimilation of the food, having 4 general food behaviors: (1) detritivores, consume a lot of material from the bottom of the water source, (2) herbivores, who consume mostly plant components (filamentous algae and higher plants); (3) periphyton consumers, who are characterized by feeding on microalgae and microinvertebrates and (4) omnivores, in which they indistinctly feed on plant material as an animal of different origin.
Nucleic acids are composed of monomers called Nucleotides
Nucleic acids are made of monomers known as Nucleotides, and there are 3 parts to Nucleotides - They are a nitrogenous base, a pentose sugar and a phosphate group
Energy is released to be used by a cell when a phosphate group is <u><em>Removed from ATP to form ADP.</em></u>
Answer: <em>C. Removed from ATP to form ADP
</em>
Explanation:
Three important energy carrier molecules in a cell are: ATP (Adenosine triphosphate, NADPH (Nicotinamide Adenosine Dinucleotide Phosphate) and FADH2. All the three carrier molecules play an important role in cellular respiration and photosynthesis.
One NADH molecule is equal to 3 ATP molecule while 1 FADH2 molecule is equal to 2 ATP molecule. During the active process, ATP is used as a form of energy because ATP dephosphorylates to ADP and Inorganic phosphate, Pi and release energy.
Answer:
Selection is a directional process that leads to an increase or a decrease in the frequency of genes or genotypes. Selection is the process that increases the frequencies of plant resistance alleles in natural ecosystems through coevolution, and it is the process that increases the frequencies of virulence alleles in agricultural ecosystems during boom and bust cycles.
Selection occurs in response to a specific environmental factor. It is a central topic of population and evolutionary biology. The consequence of natural selection on the genetic structure and evolution of organisms is complicated. Natural selection can decrease the genetic variation in populations of organisms by selecting for or against a specific gene or gene combination (leading to directional selection). It can increase the genetic variation in populations by selecting for or against several genes or gene combinations (leading to disruptive selection or balancing selection). Natural selection might lead to speciation through the accumulation of adaptive genetic differences among reproductively isolated populations. Selection can also prevent speciation by homogenizing the population genetic structure across all locations.
Selection in plant pathology is mainly considered in the framework of gene-for-gene coevolution. Plant pathologists often think in terms of Van der Plank and his concept of "stabilizing selection" that would operate against pathogen strains with unnecessary virulence. As we will see shortly, Van der Plank used the wrong term, as he was actually referring to directional selection against unneeded virulence alleles.
Answer: They do this to obtain the vital nitrogen that they need to grow.
Explanation: