1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
3 years ago
7

Which things we can find in a pond?

Biology
2 answers:
konstantin123 [22]3 years ago
8 0
Some things you'll find in any pond are:

Aquatic plants / sweet water algae.
Frogs / toads.
Fish (normally small ones).
Insects / insecta larvae.


Hope it helped,

Happy homework/ study/ exam!
ioda3 years ago
4 0
Well if you want to find animals or insects in a pond you might discover :

•water/pond skaters
•frogs
•tadpoles
•different insect larvae

These are only a few but if u would like to know all the things that you could find in a pond you could buy a pond guide or book
You might be interested in
How proteins can be so diverse when there are only a limited number of different amino acids.
Gnesinka [82]
Amino acids are the building blocks of proteins and can be arranged in many different ways to create different types of proteins. Proteins can contain any number of amino acids and they are all unique in their function.
8 0
4 years ago
discuss the electromagnetic spectrum and the combined absorption spectrum of chlorophylls a and b and the carotenoids. why is ch
Irina-Kira [14]

Answer:

In physics, electromagnetic radiation (EM radiation or EMR) refers to the waves (or their quanta, photons) of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy.[1] It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.[2]

Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields. In a vacuum, electromagnetic waves travel at the speed of light, commonly denoted c. In homogeneous, isotropic media, the oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. The wavefront of electromagnetic waves emitted from a point source (such as a light bulb) is a sphere. The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter. In order of increasing frequency and decreasing wavelength these are: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.[3]

Electromagnetic waves are emitted by electrically charged particles undergoing acceleration,[4][5] and these waves can subsequently interact with other charged particles, exerting force on them. EM waves carry energy, momentum and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Electromagnetic radiation is associated with those EM waves that are free to propagate themselves ("radiate") without the continuing influence of the moving charges that produced them, because they have achieved sufficient distance from those charges. Thus, EMR is sometimes referred to as the far field. In this language, the near field refers to EM fields near the charges and current that directly produced them, specifically electromagnetic induction and electrostatic induction phenomena.

In quantum mechanics, an alternate way of viewing EMR is that it consists of photons, uncharged elementary particles with zero rest mass which are the quanta of the electromagnetic force, responsible for all electromagnetic interactions.[6] Quantum electrodynamics is the theory of how EMR interacts with matter on an atomic level.[7] Quantum effects provide additional sources of EMR, such as the transition of electrons to lower energy levels in an atom and black-body radiation.[8] The energy of an individual photon is quantized and is greater for photons of higher frequency. This relationship is given by Planck's equation E = hf, where E is the energy per photon, f is the frequency of the photon, and h is Planck's constant. A single gamma ray photon, for example, might carry ~100,000 times the energy of a single photon of visible light.                                  

The effects of EMR upon chemical compounds and biological organisms depend both upon the radiation's power and its frequency. EMR of visible or lower frequencies (i.e., visible light, infrared, microwaves, and radio waves) is called non-ionizing radiation, because its photons do not individually have enough energy to ionize atoms or molecules or break chemical bonds. The effects of these radiations on chemical systems and living tissue are caused primarily by heating effects from the combined energy transfer of many photons. In contrast, high frequency ultraviolet, X-rays and gamma rays are called ionizing radiation, since individual photons of such high frequency have enough energy to ionize molecules or break chemical bonds. These radiations have the ability to cause chemical reactions and damage living cells beyond that resulting from simple heating, and can be a health hazard.

Explanation:

7 0
3 years ago
How is the seafloor at a mid-ocean ridge (spreading center) different from the abyssal plains?
Iteru [2.4K]

Answer:

The spreading center is colder and has less sediment than the plains

7 0
3 years ago
Im desprate pleas help !!!!!!!!!!!!!!!!!!!!!!!!!!!
satela [25.4K]

Answer:a,c,d,b

Explanation:room anatomy

8 0
3 years ago
Read 2 more answers
Do enzymes interact with many different substrates.
olchik [2.2K]

Answer:

yes they do interact. Becuase mithicly enzymes always interact with anything around them. From food to clothes to coins. So Yes

Explanation:

3 0
3 years ago
Other questions:
  • Causes water molecules to rise up from the roots, eventually reaching the leaves
    12·2 answers
  • Two students push on a car stuck in the mud with a force of 20 Newtons, 21
    14·1 answer
  • Please help!! this is due tomorrow for my bio class
    13·1 answer
  • Overfishing of (blank)
    8·1 answer
  • What is most likely to happen to an abandoned strip mine over time?
    10·2 answers
  • Two students are working together on an experiment that measures the effect of different liquid feterlizers on the thickness of
    5·1 answer
  • Warm-Up Activity - Scenario: You are on a desert island. Alone. You must survive. The island has only one food source
    13·1 answer
  • Brainliest if correct!!
    8·2 answers
  • Nervous control of gastric secretion is provided by ________. A. the rubrospinal tracts B. the reticulospinal and vestibulospina
    15·1 answer
  • When a cell gets too old and can’t function correctly anymore. We refer to these mechanisms as
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!