Answer:
The slope is 10 and the y intercept 0
Step-by-step explanation:
m is 10 and c is 0. The reason why is because m is the slope and c is the y intercept.
No, <span>.32903 is not greater than 0.59</span>
We have a rectangle with length L that is 3 inches more than the width W. Then we can write this as:

The area of the rectangle is 180 square inches.
We have to find the width W.
As the area is equal to the product of the length and the width, we can write this equation and solve for W as:

We have a quadratic equation. The roots of this equation will be the mathematical solutions.
We can find the roots using the quadratic formula:
![\begin{gathered} W=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ W=\frac{-3\pm\sqrt[]{3^2-4\cdot1\cdot(-180)}}{2\cdot1} \\ W=\frac{-3\pm\sqrt[]{9+720}}{2} \\ W=\frac{-3\pm\sqrt[]{729}}{2} \\ W=\frac{-3\pm27}{2} \\ W_1=\frac{-3-27}{2}=-\frac{30}{2}=-15 \\ W_2=\frac{-3+27}{2}=\frac{24}{2}=12 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20W%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20W%3D%5Cfrac%7B-3%5Cpm%5Csqrt%5B%5D%7B3%5E2-4%5Ccdot1%5Ccdot%28-180%29%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20W%3D%5Cfrac%7B-3%5Cpm%5Csqrt%5B%5D%7B9%2B720%7D%7D%7B2%7D%20%5C%5C%20W%3D%5Cfrac%7B-3%5Cpm%5Csqrt%5B%5D%7B729%7D%7D%7B2%7D%20%5C%5C%20W%3D%5Cfrac%7B-3%5Cpm27%7D%7B2%7D%20%5C%5C%20W_1%3D%5Cfrac%7B-3-27%7D%7B2%7D%3D-%5Cfrac%7B30%7D%7B2%7D%3D-15%20%5C%5C%20W_2%3D%5Cfrac%7B-3%2B27%7D%7B2%7D%3D%5Cfrac%7B24%7D%7B2%7D%3D12%20%5Cend%7Bgathered%7D)
The solutions are W = -15 and W = 12.
The first one is not valid, as W has to be greater than 0.
Then, the solution to our problem is W = 12 in.
Answer: the width is W = 12 inches.
Answer:
x=-3,y=-2
Step-by-step explanation:
Given 2 expressions
S1:
S2:
Write one equation in terms of any variable (x or y)
Here I am writing S1 in terms of y

Substitute this value of y as the value of y in S2
⇒
Therefore 
Substitute this value of x in any of the expressions S1 or S2
Here i am substituting in S2
⇒
Therefore x=-3 and y=-2
Answer:
when you round it it would equal to around 29.03 so its...
64lbs = 29.03kg