Answer:
- g(20) > f(20)
- g(x) exceeds f(x) for any x > 4
Step-by-step explanation:
As with most graphing problems not involving straight lines, it works well to start with a table of values. Pick a few values of x and compute f(x) and g(x) for those values. Plot the points and draw a smooth curve through them.
As in the attached, your table will show that there are two points of intersection between f(x) and g(x), and that for values of x more than 4, g(x) becomes much greater very quickly. Both curves rapidly reach the top of your graph space.
To find whether f(20) or g(20) is greater, you can evaluate the functions for that value of x.
f(20) = 20² = 400
g(20) = 2²⁰ = 1,048,576
Clearly, g(20) has a greater value.
Answer:
m
=
−
4
Step-by-step explanation:
i got this correct
Answer:
7
4
Step-by-step explanation:
The <u>actual values</u> are shown on the given graph as <u>blue points</u>.
The <u>line of regression</u> is shown on the given graph as the <u>red line</u>.
From inspection of the graph, in the year 2000 the actual rainfall was 43 cm, shown by point (2000, 43). It appears that the regression line is at y = 50 when x is the year 2000.
⇒ Difference = 50 - 43 = 7 cm
<u>In 2000, the actual rainfall was </u><u>7</u><u> centimeters below what the model predicts</u>.
From inspection of the graph, in the year 2003 the actual rainfall was 44 cm, shown by point (2003, 40). It appears that the regression line is at y = 40 when x is the year 2003.
⇒ Difference = 44 - 40 = 4 cm
<u>In 2003, the actual rainfall was </u><u>4</u><u> centimeters above what the model predicts.</u>
Answer:
Step-by-step explanation:
Answer:
Jennifer made the higher percentage of shots