1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
3 years ago
7

What would the answer be???

Mathematics
1 answer:
Korolek [52]3 years ago
4 0

Answer:

The solution is obtained by adding the two equations.

The solution is: (x, y) = ($ - \frac{2}{3} $, $ - \frac{7}{3} $)

Step-by-step explanation:

We are given two equations with two variables. The strategy is to eliminate one variable and solve for both the variables.

The two equations are:

$ 7x + y = - 7 \hspace{15mm} \hdots (1) $

$ 2x - y = 1 \hspace{15mm} \hdots (2) $

Adding both the equations, we get:

$ 7x + 2x + y - y = - 7 + 1 $

$ \implies 9x = - 6 $

$ \implies x = - \frac{2}{3} $

Substituting the value of 'x', we get the value of y.

We substitute in (2). [Can be substituted in any equation].

We get: y = 2x - 1

$ \imples y = 2\bigg(\frac{-2}{3}\bigg) - 1 $

$ \implies -\frac{4}{3} - 1 $

$ \implies y = -\frac{7}{3} $

So, we get the corresponding values of x and y which is the solution of the two equations.

You might be interested in
Vertex (0,1) x intercepts is - 1 and 1 what is the equation of the parabola?
MrRa [10]
\bf y=a(x-{{ h}})^2+{{ k}}\\
x=a(y-{{ k}})^2+{{ h}}\qquad\qquad  vertex\ ({{ h}},{{ k}})

those are the vertex form of a parabola... so hmmm
the vertex of this one is at 0,1 and intercepts or "solutions" are at -1 and 1, so is opening downwards, notice the picture below

that means, the squared variable is the "x", thus the form is \bf y=a(x-{{ h}})^2+{{ k}}

now, we know the vertex is at 0,1, and two x-intercepts of \pm 1,0

thus      \bf y=a(x-{{ h}})^2+{{ k}}\qquad 
\begin{cases}
h=0\\
k=1\\
when
\\
x=\pm 1\\
y=0
\end{cases}
\\\\\\
\textit{so.. hmmm let us use the point ... say hmmm 1,0}
\\\\
y=a(x-{{ h}})^2+{{ k}}\implies 0=a(1-0)^2+1

solve for "a", to see what that coefficient is, then plug it back in the vertex form equation

6 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Dilate line f by a scale factor of 3 with the center of dilation at the origin to create line f'. Where are points A' and B' loc
Igoryamba

Answer:

To dilate line F by a scale factor of 3 in the center of origin multiply points A and B by 3. For example, Point A(x*3,y*3).

Step-by-step explanation:

5 0
4 years ago
QUICKLY! ILL GIVE BRAINLEST AND THANKS!!
aev [14]

Answer:

t one because changing for t is approximately 1

and for kilometers is better you choose 1000

6 0
3 years ago
In this activity, you will predict the probability of an event from the relative frequency of the event. Pablo has some one-, fi
Vadim26 [7]

Answer:

Part A

6/40 = 0.15

Part B

16/40 = 0.4

Part C

10/40 = 0.25

Part D

8/40 = 0.20

Part E

The relative frequency of drawing a five-dollar bill is higher than the other relative frequencies. So, I can predict that Pablo is most likely to have more five-dollar bills than any of the others.

Part F

The relative frequency of drawing a one-dollar bill is lower than the other relative frequencies. So, I can predict that Pablo is most likely to have fewer one-dollar bills than bills of any other denomination.

Part G

It would not be a surprise if Pablo had fewer twenties than ones. The experiment was conducted only 40 times, and the numbers of times one-, ten-, and twenty-dollar bills were drawn are not very far apart. So, the number of twenties could be more or less than the number of ones. The same goes for tens and ones.

If you're on Plato an on slide 20 this Answer is for you:

<em>If Pablo does an experiment 100 times, will the relative frequency be more accurate or less accurate than if he did the experiment 40 times? Why?</em>

Answer: As the number of trials increases, the relative frequency becomes closer to the probability of the event. So, the relative frequency would be more accurate if the experiment were repeated 100 times rather than 40 times.

4 0
3 years ago
Other questions:
  • How to solve using the word problem and information
    9·1 answer
  • Does anyone know the highest common factor (HCM) of 98 and 42
    14·2 answers
  • The exterior angles of a triangle are in the ratio of 4:5:6. What is the least interior angle
    8·1 answer
  • Two numbers have prime factorizations of 2 2 · 3 · 5 and 2 · 3 2 · 7.
    6·2 answers
  • HELP I REALLY NEED HELP ON THIS !
    6·1 answer
  • What is sin(C)? Please explain.
    14·2 answers
  • Solve for y.<br> y+9=7<br><br> Any help
    15·2 answers
  • 3+-2+6
    10·1 answer
  • Kelly simplified this power of a product.
    8·2 answers
  • Sylvia has a circular table cloth. The area of the table cloth is 254.34 in2
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!