structure of a compound influences its function in many ways like we take example of phospholipid bilayer 1. The fact that the tails are hydrophobic means that they do not interact with water. When a bunch of phospholipids are floating around in water, they try to arrange themselves in a bilayer that shields the hydrophobic parts from water-based, or aqueous, surroundings.
2. The heads are hydrophilic and can then interact with water and other polar or charged substances on either side of the bilayer. The bilayer acts as a barrier that allows cells to maintain internal conditions that are different from external conditions, which is monumentally important for cells to operate properly.
3. Phospholipids demonstrate the intersection of structure and function in another way, too. We already know that fatty acids can be saturated or unsaturated and that unsaturated fatty acids have bends in their chains. Those bends prevent fatty acids from packing close.
DNA is verry important to life. It is the instructions or the blueprints of how to make (and makes up) the organism. Without it life as we know it is just not possible.
<span>Species is a group of reproducing populations that are isolated from other groups. </span>
Answer:
Thymidine dimers is likely to be repair as soon as it is originated but if left unrepaired then it causes frame shift mutations.
Explanation:
In case of Bacterium if UV irradiation induces covalent linkage of two thymidine present adjacently to each other or on a single strand to make thymidine dimers.
These either excised via DNA repair enzyme like Endonuclease V and the proof reading activity of DNA polymerase I enzyme help in incorporation of nucleotide by taking the unmutated original strand as a template.
These dimers if not excised before second round of replication than the sequence of newly synthesized strand will be altered. As DNA polymerase III enzyme read thymidine dimers as single thymidine nucleotide and incorporate only 1 adenine in the newly synthesizing complementary strand which results in frame shift mutations
It is the mutation in which reading frame of codons is shifted or altered due to deletion or addition of a single nucleotide.