Answer:
Molar mass of bromine is equal to 
Explanation:
The molar mass of HBr is equal to the sum of atomic weight of Bromine.
Atomic Weight of hydrogen is equal to 
Atomic Weight of Bromine is equal to 
Molar mass of Bromine
= Atomic Weight of hydrogen + Atomic Weight of Bromine
Molar mass of Bromine 
False because a compound is one or more elements
The unit expressed in 660 nm of light represents the wavelength of light. If you want to determine the frequency, you use the speed of light to relate the two. The formula is:
c = λν
where
λ is the wavelength
ν is the frequency
c is the speed of light = 3×10⁸ m
Apply SI units:
(3×10⁸ m) = (660×10⁻⁹ m)(ν)
Solving for ν,
<em>ν = 4.55×10¹⁴ s⁻¹</em>
Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M
Answer:
13.3
Explanation:
Before opening the stopcocks you have 40psi in total.
After that, those 40psi will be divided into 3bulbs, so 40/3=13.3psi for the system.