An ensemble of 100 identical particles is sent through a Stern-Gerlach apparatus and the z-component of spin is measured. 46 yie
ld the value +\frac{\hbar}{2}+ ℏ 2 while the other 54 give -\frac{\hbar}{2}− ℏ 2. Compute the standard deviation of the measurements.
1 answer:
Answer:
The standard deviation is 0.4984 
Step-by-step explanation:
In order to find standard deviation, The equation is given as

Here μ is the mean which is calculated as follows

Now the standard deviation is given as
![\sigma=\sqrt{\frac{1}{100} \sum_{i=1}^{100} (-0.04 \hbar-x_i)^2}\\\sigma=\sqrt{\frac{1}{100} [[46 \times(-0.04 \hbar-0.5 \hbar)^2]+[54 \times(-0.04 \hbar+0.5 \hbar)^2]}]\\\sigma=\sqrt{\frac{1}{100} [[46 \times(-0.54 \hbar)^2]+[54 \times(0.46 \hbar)^2]}]\\\sigma=\sqrt{\frac{1}{100} [[46 \times(0.2916 \hbar)]+[54 \times(0.2116 \hbar)]}]\\\sigma=\sqrt{\frac{1}{100} [13.4136 \hbar+11.4264 \hbar}]\\\sigma=\sqrt{\frac{24.84 \hbar}{100}}\\\sigma =0.4984 \hbar](https://tex.z-dn.net/?f=%5Csigma%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B100%7D%20%5Csum_%7Bi%3D1%7D%5E%7B100%7D%20%28-0.04%20%5Chbar-x_i%29%5E2%7D%5C%5C%5Csigma%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B100%7D%20%5B%5B46%20%5Ctimes%28-0.04%20%5Chbar-0.5%20%5Chbar%29%5E2%5D%2B%5B54%20%5Ctimes%28-0.04%20%5Chbar%2B0.5%20%5Chbar%29%5E2%5D%7D%5D%5C%5C%5Csigma%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B100%7D%20%5B%5B46%20%5Ctimes%28-0.54%20%5Chbar%29%5E2%5D%2B%5B54%20%5Ctimes%280.46%20%5Chbar%29%5E2%5D%7D%5D%5C%5C%5Csigma%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B100%7D%20%5B%5B46%20%5Ctimes%280.2916%20%5Chbar%29%5D%2B%5B54%20%5Ctimes%280.2116%20%5Chbar%29%5D%7D%5D%5C%5C%5Csigma%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B100%7D%20%5B13.4136%20%5Chbar%2B11.4264%20%5Chbar%7D%5D%5C%5C%5Csigma%3D%5Csqrt%7B%5Cfrac%7B24.84%20%5Chbar%7D%7B100%7D%7D%5C%5C%5Csigma%20%3D0.4984%20%5Chbar)
So the standard deviation is 0.4984 
You might be interested in
Answer:
4
Step-by-step explanation:
i think its correct
I think the answer would be B. 4 cm
Answer:
The maximum of the parabola lands at (2,5).
Let’s go with 7.0 that is what I think it is

90.1