Answer:
$59,400 favorable
Explanation:
The computation of the direct material quantity variance is shown below;
As we know that
Direct material quantity variance is
= Standard Price × (Standard Quantity - Actual Quantity)
= $9 × (16,400 pounds - 9,800 pounds)
= $9 × 6,600 pounds
= $59,400 favorable
The favorable variance indicates that the standard quantity is more than the actual quantity and the same is to be considered
<span>The amount of public university college professors required will rise but
the supply of workers in other like occupations will fall. So if the supply
decreases, and the demand goes high as expected, there will be a shortage of
public university college professors.</span>
A the answer bro or girl ok
Answer:
$6.00
Explanation:
Given data
quantity demanded ( x ) ∝ 1 / p^3 for p > 1
when p = $10/unit , x = 64
initial cost = $140, cost per unit = $4
<u>Determine the price that will yield a maximum profit </u>
x = k/p^3 ----- ( 1 ). when x = 64 , p = $10 , k = constant
64 = k/10^3
k = 64 * ( 10^3 )
= 64000
back to equation 1
x = 64000 / p^3
∴ p = 40 / ∛x
next calculate the value of revenue generated
Revenue(Rx) = P(price ) * x ( quantity )
= 40 / ∛x * x = 40 x^2/3
next calculate Total cost of product
C(x) = 140 + 4x
Maximum Profit generated = R(x) - C(x) = 0
= 40x^2/3 - 140 + 4x = 0
= 40(2/3) x^(2/3 -1) - 0 - 4 = 0
∴ ∛x = 20/3 ∴ x = (20/3 ) ^3 = 296
profit is maximum at x(quantity demanded ) = 296 units
hence the price that will yield a maximum profit
P = 40 / ∛x
= ( 40 / (20/3) ) = $6
Answer:
The required rate of return on stock is 14.6% and option b is the correct answer.
Explanation:
The required rate of return is the minimum return that investors demand/expect on a stock based on the systematic risk of the stock as given by the beta. The expected or required rate of return on a stock can be calculated using the CAPM equation.
The equation is,
r = rRF + Beta * (rM - rRF)
Where,
- rRF is the risk free rate
- rM is the return on market
r = 0.05 + 1.2 * (0.13 - 0.05)
r = 0.146 or 14.6%