Answer:
The albedo temperature for Mars and Venus are 210K and 184 K respectively.Mars albedo temperature is closer to its black body temperature such that the Venus has more albedo.Thus there is a chance that Mars would have had life in their history.
Explanation:
The albedo temperature is given as
![Te =\left [\dfrac{L(1-a)}{ (16\pi \sigma D^2}\right]^{1/4}](https://tex.z-dn.net/?f=Te%20%3D%5Cleft%20%5B%5Cdfrac%7BL%281-a%29%7D%7B%20%2816%5Cpi%20%5Csigma%20D%5E2%7D%5Cright%5D%5E%7B1%2F4%7D)
Here
L = Solar luminosity = 3.846*1026 W m-2 K-4
D = distance from Sun
σ = the Stefan-Boltzman constant = 5.6704 * 10-8 W
a is the albedo constant whose value for Mars is 0.250 while for Venus it is 0.900
So the albedo temperature is given as
Venus: 184 K
Mars: 210 K
The black body temperature is given as
![Te =\left [\dfrac{L}{ (16\pi \sigma D^2}\right]^{1/4}](https://tex.z-dn.net/?f=Te%20%3D%5Cleft%20%5B%5Cdfrac%7BL%7D%7B%20%2816%5Cpi%20%5Csigma%20D%5E2%7D%5Cright%5D%5E%7B1%2F4%7D)
By substitution of the values, the black body temperature for Venus and Mars are as
Venus: 327 K
Mars: 225 K
Mars albedo temperature is closer to its black body temperature such that the Venus has more albedo.
Thus there is a chance that Mars would have had life in their history.
2 tectonic plates meet at the regions edge
<u><em>Answer:</em></u>
<u><em>I think B. But I may be wrong :/</em></u>
<u><em>Explanation:</em></u>
<u><em>Please give me brainliest :)</em></u>
Answer:
B and C
Explanation:
B. In a given rock sample, the amount of Silicon-32 isotopes gets divided in half about every 170yrs.
This is the concept of half-life. Half life is the time take for half of a radioactive isotope to disintegrate. The shorter the half life the faster the isotope disintegrates.
From the question, we were told that it would take 170yrs for half of the isotope of Silicon to disintegrate to Phosphorus. This is the half life.
C. The half life can be used to determine the amount of Si-32 that has decayed from the time closure temperature was reached.
The closure temperature is very important in radioactivity. It is the temperature at which a system has cooled and there is no resulting disintegration of parent and daughter isotopes.
From first order kinetics, we know that the rate at which radioactive elements decay at any time is directly proportional to the number of radioactive atoms present. A knowledge of the half life helps to figure out the number of atoms that has decayed in time.
Answer: since the Quebeckers are native french speakers vs the rest of Canada who's first language is English.
Explanation: