1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
4 years ago
7

Rewrite each fraction with a denominator of 20.

Mathematics
1 answer:
Mekhanik [1.2K]4 years ago
5 0

Answer:

What fractions? lol

Step-by-step explanation:

You might be interested in
Help ( correct answer ) 16÷(4)(2)-3(2)÷2+1
Bess [88]
16 ÷ (4)(2) - 3(2) <span>÷ 2+1
16 </span>÷ 8 - 6 <span>÷ 3
2 - 2
0

Answer: 0</span>
3 0
3 years ago
Read 2 more answers
A study of long-distance phone calls made from General Electric Corporate Headquarters in Fairfield, Connecticut, revealed the l
Katena32 [7]

Answer:

(a) The fraction of the calls last between 4.50 and 5.30 minutes is 0.3729.

(b) The fraction of the calls last more than 5.30 minutes is 0.1271.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is 0.1109.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is 0.745.

(e) The time is 5.65 minutes.

Step-by-step explanation:

We are given that the mean length of time per call was 4.5 minutes and the standard deviation was 0.70 minutes.

Let X = <u><em>the length of the calls, in minutes.</em></u>

So, X ~ Normal(\mu=4.5,\sigma^{2} =0.70^{2})

The z-score probability distribution for the normal distribution is given by;

                           Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean time = 4.5 minutes

           \sigma = standard deviation = 0.7 minutes

(a) The fraction of the calls last between 4.50 and 5.30 minutes is given by = P(4.50 min < X < 5.30 min) = P(X < 5.30 min) - P(X \leq 4.50 min)

    P(X < 5.30 min) = P( \frac{X-\mu}{\sigma} < \frac{5.30-4.5}{0.7} ) = P(Z < 1.14) = 0.8729

    P(X \leq 4.50 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.5-4.5}{0.7} ) = P(Z \leq 0) = 0.50

The above probability is calculated by looking at the value of x = 1.14 and x = 0 in the z table which has an area of 0.8729 and 0.50 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.8729 - 0.50 = <u>0.3729</u>.

(b) The fraction of the calls last more than 5.30 minutes is given by = P(X > 5.30 minutes)

    P(X > 5.30 min) = P( \frac{X-\mu}{\sigma} > \frac{5.30-4.5}{0.7} ) = P(Z > 1.14) = 1 - P(Z \leq 1.14)

                                                              = 1 - 0.8729 = <u>0.1271</u>

The above probability is calculated by looking at the value of x = 1.14 in the z table which has an area of 0.8729.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is given by = P(5.30 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 5.30 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 5.30 min) = P( \frac{X-\mu}{\sigma} \leq \frac{5.30-4.5}{0.7} ) = P(Z \leq 1.14) = 0.8729

The above probability is calculated by looking at the value of x = 2.14 and x = 1.14 in the z table which has an area of 0.9838 and 0.8729 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.8729 = <u>0.1109</u>.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is given by = P(4.00 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 4.00 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 4.00 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.0-4.5}{0.7} ) = P(Z \leq -0.71) = 1 - P(Z < 0.71)

                                                              = 1 - 0.7612 = 0.2388

The above probability is calculated by looking at the value of x = 2.14 and x = 0.71 in the z table which has an area of 0.9838 and 0.7612 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.2388 = <u>0.745</u>.

(e) We have to find the time that represents the length of the longest (in duration) 5 percent of the calls, that means;

            P(X > x) = 0.05            {where x is the required time}

            P( \frac{X-\mu}{\sigma} > \frac{x-4.5}{0.7} ) = 0.05

            P(Z > \frac{x-4.5}{0.7} ) = 0.05

Now, in the z table the critical value of x which represents the top 5% of the area is given as 1.645, that is;

                      \frac{x-4.5}{0.7}=1.645

                      {x-4.5}{}=1.645 \times 0.7

                       x = 4.5 + 1.15 = 5.65 minutes.

SO, the time is 5.65 minutes.

7 0
4 years ago
Given the two points: (0,6) and (6,18), write the equation of the line.
NNADVOKAT [17]
Y=2x+6 We know the y intercept is +6 so we still can’t eliminate any of the options. We know it can’t be 1/3x or 1/2x because the y value is greater than the x value. (6)(2)+6=18
4 0
3 years ago
Convert to an improper fraction. Type in your answer with the negative in the numerator. -11 1/3
vovangra [49]
The answer to the question is :

-11*3+1/3
=-33+1/3
= -32/3

Therefore, answer = -32/3
                                 


6 0
3 years ago
Read 2 more answers
Please do this ASAP!<br> NO LINKS<br> it’s about inequality’s
alina1380 [7]

Answer:

x ≤ 6

Step-by-step explanation:

Given

- 12x ≥ - 72

Divide both sides by - 12, reversing the symbol as a result of dividing by a negative quantity.

x ≤ 6

8 0
3 years ago
Read 2 more answers
Other questions:
  • Plz help me quick!!!!!!!!!!!!
    7·1 answer
  • PLEASE PLEASE HELP!!! I just need to catch up!!
    13·1 answer
  • What word phrase can you use to represent the algebraic expression 7x?
    12·1 answer
  • You select a card at random from the cards that make up the word replacement without replacing the card,you choose a second card
    5·1 answer
  • A child tosses a baseball up into the air. On its way down, it gets caught in a tree for several seconds before falling back dow
    11·1 answer
  • Select all that apply.
    15·2 answers
  • Simplify x X x^5 divided by x^2 X x
    7·2 answers
  • These are my last two questions can someone please help me with them. :/
    15·2 answers
  • Find the area and perimeter of the original planned patio and the new planned patio? help me please​
    9·1 answer
  • INSECT CONTROL Mr. Malone used 40 pounds of insecticide to cover 1,760 square feet of lawn and 60 pounds to cover an additional
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!