Answer:
a. 2^3
b. 3^4
c. 4^3 × 5^2
d. 9^4 × 7^2
Step-by-step explanation:
The following equations are given
a. 2 × 2× 2
b. 3 × 3 × 3 × 3
c. 4 × 4 × 4 × 5 × 5
d. 9 × 7 × 9 × 9 × 7 × 9
We need to find the index notation for the above equations
a. 2^3
b. 3^4
c. 4^3 × 5^2
d. 9^4 × 7^2
In this way it should be done
The same would be relevant
Answer:
10 sorry if i'm wrong
Step-by-step explanation:
Answer:
7x ≥ 70
Step-by-step explanation:
5x + 2x ≥ 70
7x ≥ 70
x ≥ 10
Hope this helps!
-sruthi123
Answer:
+1 is the potential root of the function.
Step-by-step explanation:
Given;
p(x) = x⁴ + 22x⁴ – 16x - 12
A potential root of the function is zero of the function. That is a potential root will reduce the function to zero or close to zero.
To determine this, we test each of the root given;
p(6) = (6)⁴ + 22(6)⁴ - 16(6) - 12 = 29700
p(3) = (3)⁴ + 22(3)⁴ - 16(3) - 12 = 1803
p(1) = (1)⁴ + 22(1)⁴ - 16(1) - 12 = -5
p(8) = (8)⁴ + 22(8)⁴ - 16(8) - 12 = 94068
The only number that reduces the function close to zero is +1, then +1 is the potential root of the function.
Answer:
4x + 4y - 8
Step-by-step explanation:
4(x - 2 +y) = 4*x -4*2 + 4*y by the distributive property