<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>
For the first one it might be 26? i’m not so sure
Answer:
94
Step-by-step explanation:
Since the circle equals to 142 degrees you have to subtract the already given umber (48) by the total amount and it'll give you the missing angle which is 94.
Answer:
2nd and 3rd
Step-by-step explanation:
Answer:
The quotient rule for exponents states that
.
When dividing exponential expressions with the same nonzero base, <u>subtract</u> the exponents.
Step-by-step explanation:
Some rules to solve exponents are:
The quotient rule for exponents states that:
.
When dividing exponential expressions with the same nonzero base, <u>subtract</u> the exponents.