Answer:
Step-by-step explanation:
L
H
S
=
cos
4
x
=
2
cos
2
(
2
x
)
−
1
=
2
(
cos
(
2
x
)
)
2
−
1
=
2
(
2
cos
2
x
−
1
)
2
−
1
=
2
(
4
cos
4
x
−
4
cos
2
x
+
1
)
−
1
=
8
cos
4
x
−
8
cos
2
x
+
2
−
1
=
8
cos
4
x
−
8
cos
2
x
+
1
=
R
H
S
Again
L
H
S
=
cos
4
x
=
2
cos
2
(
2
x
)
−
1
=
2
(
1
−
2
sin
2
x
)
)
2
−
1
=
2
(
1
−
4
sin
2
x
+
4
sin
4
x
)
−
1
=
2
−
8
sin
2
x
+
8
sin
4
x
−
1
=
8
sin
4
x
−
8
sin
2
x
+
1
=
R
H
S
sin
2
x
+
cos
2
x
=
1
cos
2
x
=
1
−
sin
2
x
substitute in the equation as follows
8
cos
4
x
−
8
cos
2
x
+
1
=
8
cos
2
x
(
cos
2
x
−
1
)
+
1
=
8
(
1
−
sin
2
x
)
(
1
−
sin
2
x
−
1
)
+
1
=
8
(
1
−
sin
2
x
)
(
−
sin
2
x
)
+
1
=
8
sin
4
x
−
8
sin
2
x
+
1
Answer:
B. 4
Step-by-step explanation:
The given function is of the form:

A is called the amplitude of the given function.
We can read from the graph that, the function ranges between:
-4 and 4
This implies that:

Therefore the amplitude of the function is 4.
Hence the value of A must be 4.
Let X= the number of tickets sold at $35 each
Let 350 -X = the number of tickets sold at $25 each
The number of tickets sold for each type will be computed as follows:
X(35)+(350-X)25=10250
35X+8750-25X=10250
10X=10250-8750
X=1500/10
X=150 the number of tickets sold at $35 each
350-150 the number of tickets sold at $25 each
To recheck:
150(35)+200(25)
5250+5000
10250
Answer:
10.67 m
Step-by-step explanation:
Velocity is given as;
v(t) = t² − t − 6
To get the distance, we will integrate the velocity equation.
x(t) = ∫v(t) = (t³/3) - (t²/2) - 6t
Thus, from t=0 seconds to t=4 seconds., we have;
(t³/3) - (t²/2) - 6t between 0 and 4.
Thus;
Total Distance = [(4³/3) - (4²/2) - 6(4)] - [(0³/3) - (0²/2) - 6(0)]
Total distance = (64/3) - 8 - 24 = -10.67 m
Distance can't be negative and so we take the absolute value which is 10.67 m