A. A 90° counterclockwise rotation of trapezoid JKLM about the origin will move angle L onto angle R.
Step-by-step explanation:
Since both the trapezoids, trapezoid JKLM and PQRS are congruent, we can do any transformation, may be rotation, reflection and translation.
A 90° counterclockwise rotation of trapezoid JKLM about the origin will move angle L onto angle R is the true statement others are incorrect statements.
When the Preimage is rotated 90° counterclockwise rotation, then its coordinates (x,y) changed into (-y,x)
Answer:
Step-by-step explanation:
To prove Δ ABC similar to ΔDBE we can consider
Segments AC and DE are parallel.
⇒ DE intersects AB and BC in same ratio.
AB is a transversal line passing AC and DE.
⇒∠BAC=∠BDE [corresponding angles]
Angle B is congruent to itself due to the reflexive property.
All of them are telling a relation of parts of ΔABC to ΔDBE.
The only option which is not used to prove that ΔABC is similar to ΔDBE is the first option ,"The sum of angles A and B are supplementary to angle C".
Answer:
It’s A
Step-by-step explanation:
I think
Answer:
second degree
linear polynomial
Step-by-step explanation:
Answer:
x1=3. x2=-2
Step-by-step explanation:

b=-1
a=1
c=-6





x1=3
x2=-2
