Answer:
-4 degrees Celsius
Step-by-step explanation:
start at 8
subtract 12 from 8
8-12=-4
Answer:
x = 28.01t,
y = 10.26t - 4.9t^2 + 2
Step-by-step explanation:
If we are given that an object is thrown with an initial velocity of say, v1 m / s at a height of h meters, at an angle of theta ( θ ), these parametric equations would be in the following format -
x = ( 30 cos 20° )( time ),
y = - 4.9t^2 + ( 30 cos 20° )( time ) + 2
To determine " ( 30 cos 20° )( time ) " you would do the following calculations -
( x = 30 * 0.93... = ( About ) 28.01t
This represents our horizontal distance, respectively the vertical distance should be the following -
y = 30 * 0.34 - 4.9t^2,
( y = ( About ) 10.26t - 4.9t^2 + 2
In other words, our solution should be,
x = 28.01t,
y = 10.26t - 4.9t^2 + 2
<u><em>These are are parametric equations</em></u>
Answer:
Hence, Grasshopper will land on the ground after 1.5 sec.
Step-by-step explanation:
It s given that:
The height, in feet, of the grasshopper above the ground after t seconds is modeled by the function:

Now we are asked to find:
In how many seconds will the grasshopper land on the ground?
i.e. we have to find the value of t such that h(t)=0
i.e.

i.e. we need to find the roots of the given quadratic equation.
On solving the quadratic equation or plotting it's graph we could observe that the point where h(t)=0 are:

As time can't be negative hence we will consider:

Hence, grasshopper will land on the ground after 1.5 sec.
Answer:t the farthest city south is bellville and the volcano name is sue
Step-by-step explanation:
3+5+2+6=16 in each bag multiply or divide sorry not that much of an answer