<span>3x^2y^2 - 5xy^2 - 3x^2y^2 + 2x^2
= 2x^2 - 5xy^2
hope that helps</span>
that doesn't make sense I'm sorry
You need 20 oz. of punch with 3 parts ginger ale and 2 parts HI-C. So the end result will have 5 parts. To find out how many ounces are in each part, just divide the total (20) by the number of parts (5):
20 / 5 = 4
There will be 4 ounces per part.
First, solve for the amount of ginger ale. The problem says the punch is 3 parts ginger ale, so just multiply the number of parts by the amount in each part:
(3)(4) = 12
The punch will have 12 ounces of ginger ale.
Next, solve for the amount of HI-C. The problem says the punch is 2 parts HI-C, so just multiply the number of parts by the amount in each part:
(2)(4) = 8
The punch will have 8 ounces of HI-C.
Hope this helps!
Hey ! there
Answer:
- <u>1</u><u>1</u><u>3</u><u>.</u><u>0</u><u>4</u><u> </u><u>unit </u><u>cube</u>
Step-by-step explanation:
In this question we are provided with a sphere <u>having</u><u> </u><u>radius </u><u>3 </u><u>units </u>and <u>value </u><u>of </u><u>π </u><u>is </u><u>3.</u><u>1</u><u>4</u><u> </u><u>.</u><u> </u>And we're asked to find the<u> </u><u>volume</u><u> of</u><u> </u><u>sphere</u><u> </u><u>.</u>
For finding volume of sphere , we need to know its formula . So ,

<u>Where</u><u> </u><u>,</u>
- π refers to <u>3.</u><u>1</u><u>4</u>
- r refers to <u>radius</u><u> of</u><u> sphere</u>
<u>Sol</u><u>u</u><u>tion </u><u>:</u><u> </u><u>-</u>
Now , we are substituting value of π and radius in the formula ,

Simplifying it ,

Cancelling 3 with 3 :

We get ,

Multiplying 4 and 3.14 :

Multiplying 12.56 and 9 :

- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>sphere</u><u> </u><u>having </u><u>radius </u><u>3 </u><u>units </u><u>is </u><em><u>1</u></em><em><u>1</u></em><em><u>3</u></em><em><u> </u></em><em><u>.</u></em><em><u>0</u></em><em><u>4</u></em><em><u> </u></em><em><u>units </u></em><em><u>cube </u></em><em><u>.</u></em>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>