1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
4 years ago
14

Quadratic EquationsHow do I solve a quadratic equation?​

Mathematics
1 answer:
Nezavi [6.7K]4 years ago
3 0

Answer:

Factoring / factorisation

Completing the Square.

Quadratic Formula.

Graphing.

Step-by-step explanation:

You might be interested in
Each of two groups consists of 100 patients who have leukaemia. A new drug is given to
Y_Kistochka [10]

Answer:76jj

Step-by-step explanation:

8 0
3 years ago
What is the least common denominator of the expression below?
Igoryamba

<em>Greetings from Brasil...</em>

from notable products:

A² - B² = (A + B)·(A - B)

bringing to our problem:

9 - G² = (3 + G)·(3 - G)

Factoring 24G + 8G²:

8G(3 + G)

So, we have:

{G²/[ (3 + G)·(3 - G)]} + {(14 + G)/[8G(3 + G)]}

So the  least common denominator is: 3 + G

\large{\frac{G^2}{9-G^2}+\frac{14+G}{24G+8G^2}=\frac{G^2}{(3+G)\cdot (3-G)}+\frac{14+G}{8G\cdot (3+G)}}

4 0
3 years ago
Which ones do not belong with the other three? And why
Crank
The one that says "the power is 5" because the power is three. The power is always the exponent.
6 0
3 years ago
Queen Parallela has 150 meters of fencing to build a rectangular pen for her dragon, what function represents the area of the pe
lakkis [162]

Answer:

Hi how are you doing today Jasmine

6 0
3 years ago
Lim n-&gt; infinity [1/3 + 1/3² + 1/3³ + . . . .+ 1/3ⁿ]​
Verizon [17]

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]

Let we first evaluate

\rm :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }

Its a Geometric progression with

\rm :\longmapsto\:a = \dfrac{1}{3}

\rm :\longmapsto\:r = \dfrac{1}{3}

\rm :\longmapsto\:n = n

So, Sum of n terms of GP series is

\rm :\longmapsto\:S_n = \dfrac{a(1 -  {r}^{n} )}{1 - r}

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]

\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Hence, </u>

\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Therefore, </u>

\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]} =  \frac{1}{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>Explore More</u></h3>

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

8 0
3 years ago
Other questions:
  • Guys i am so confused right now??
    10·2 answers
  • An algebraic expression is described below.
    8·1 answer
  • A tanker that ran aground is leaking oil that forms a circular slick about 0.2 foot thick. To estimate the rate​ dV/dt (in cubic
    7·2 answers
  • I need Help with this TRIG question
    8·1 answer
  • The sum of two intcgers is -6. If one of them is 2, then the other is
    15·2 answers
  • Using the digits 2,3,5,6,8 find the smallest possible product?
    10·1 answer
  • 5. What is the 38th term of the arithmetic sequence where *
    14·2 answers
  • If the solution to a linear system of equations is x=6 and y= 2 and you graphed the two equations, where would the two lines int
    10·1 answer
  • Question 4 Multiple Choice Worth 4 points)
    6·2 answers
  • A rectangular bedroom is 2 ft longer than it is wide. Its area is 99 ft^2. What is the width of the room?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!