Answer:
The values of given expressions are:
1. gh = -21
2. g^2 - h = 46
3. g + h^2 = 2
4. g + h = -4
5. h - g = 10
6. g - h = -10
Step-by-step explanation:
Given values of g and h are:
g = -7
h = 3
<u>1. gh</u>
The two numbers are being multiplied
Putting the values

<u>2. g^2-h</u>
Putting the values

<u>3. g+h^2</u>
Putting the values

<u>4. g+h</u>
Putting the values

<u>5. h-g</u>
Putting the values

<u>6. g-h</u>
Putting values

Hence,
The values of given expressions are:
1. gh = -21
2. g^2 - h = 46
3. g + h^2 = 2
4. g + h = -4
5. h - g = 10
6. g - h = -10
Answer:
The 98% confidence interval for the true difference between testing averages for students using Method 1 and students using Method 2 is (-8.04, 0.84).
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for the difference between population means is:

The information provided is as follows:

The critical value of <em>z</em> for 98% confidence level is,

Compute the 98% confidence interval for the true difference between testing averages for students using Method 1 and students using Method 2 as follows:


Thus, the 98% confidence interval for the true difference between testing averages for students using Method 1 and students using Method 2 is (-8.04, 0.84).
Answer:
S(-2, -3)
Step-by-step explanation:
Find the diagram attached below,=. Frim the diagram, the coordinate of R and T are (-5, 3) and (-1, -5) respectively. If the ratio of RS to ST is 3:1, the coordinate of S can be gotten using the midpoint segment formula as shown;
S(X, Y) = {(ax1+bx2/a+b), (ay1+by1/a+b)} where;
x1 = -5, y1 = 3, x2 = -1, y2 = -5, a = 3 and b =1
Substitute the values into the formula;
X = ax2+bx1/a+b
X = 3(-1)+1(-5)/3+1
X = -3-5/4
X = -8/4
X = -2
Similarly;
Y = ay2+by1/a+b
Y = 3(-5)+1(3)/3+1
Y = -15+3/4
Y = -12/4
Y = -3
Hence the coordinate of the point (X, Y) is (-2, -3)
i think its c (a picture of a city )
The answer is 175 square inches because you have to multiply 5in•7in to get 35inches per picture and since there are five you have to multiply by 35•5=175