Answer:
a
, ![\sigma = 5.15](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%205.15)
b
![15.505 < \mu < 21.495](https://tex.z-dn.net/?f=15.505%20%3C%20%5Cmu%20%3C%20%2021.495)
c
![14.93 < \mu < 22.069](https://tex.z-dn.net/?f=14.93%20%3C%20%5Cmu%20%3C%20%2022.069)
Step-by-step explanation:
From the question we are are told that
The sample data is 21, 14, 13, 24, 17, 22, 25, 12
The sample size is n = 8
Generally the ample mean is evaluated as
![\= x = \frac{\sum x }{n}](https://tex.z-dn.net/?f=%5C%3D%20x%20%20%3D%20%20%5Cfrac%7B%5Csum%20x%20%20%7D%7Bn%7D)
![\= x = \frac{ 21 + 14 + 13 + 24 + 17 + 22+ 25 + 12 }{8}](https://tex.z-dn.net/?f=%5C%3D%20x%20%20%3D%20%20%5Cfrac%7B%20%2021%20%2B%2014%20%2B%2013%20%2B%2024%20%2B%2017%20%2B%2022%2B%2025%20%2B%2012%20%20%7D%7B8%7D)
![\= x = 18.5](https://tex.z-dn.net/?f=%5C%3D%20x%20%20%3D%2018.5)
Generally the standard deviation is mathematically evaluated as
![\sigma = \sqrt{\frac{\sum (x- \=x )^2}{n}}](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%20%5Csqrt%7B%5Cfrac%7B%5Csum%20%28x-%20%5C%3Dx%20%29%5E2%7D%7Bn%7D%7D)
![\sigma = \sqrt{\frac{\sum ((21 - 18.5)^2 + (14-18.5)^2+ (13-18.5)^2+ (24-18.5)^2+ (17-18.5)^2+ (22-18.5)^2+ (25-18.5)^2+ (12 -18.5)^2 )}{8}}](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%20%5Csqrt%7B%5Cfrac%7B%5Csum%20%28%2821%20-%2018.5%29%5E2%20%2B%20%2814-18.5%29%5E2%2B%20%2813-18.5%29%5E2%2B%20%2824-18.5%29%5E2%2B%20%2817-18.5%29%5E2%2B%20%2822-18.5%29%5E2%2B%20%2825-18.5%29%5E2%2B%20%2812%20-18.5%29%5E2%20%29%7D%7B8%7D%7D)
![\sigma = 5.15](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%205.15)
considering part b
Given that the confidence level is 90% then the significance level is evaluated as
![\alpha = 100-90](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%20%20100-90)
![\alpha = 10\%](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%2010%5C%25)
![\alpha = 0.10](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%200.10)
Next we obtain the critical value of
from the normal distribution table the value is
![Z_{\frac{ \alpha }{2} } = 1.645](https://tex.z-dn.net/?f=Z_%7B%5Cfrac%7B%20%5Calpha%20%7D%7B2%7D%20%7D%20%20%3D%20%201.645)
The margin of error is mathematically represented as
![E = Z_{\frac{ \alpha }{2} } * \frac{\sigma }{\sqrt{n} }](https://tex.z-dn.net/?f=E%20%3D%20%20Z_%7B%5Cfrac%7B%20%5Calpha%20%7D%7B2%7D%20%7D%20%2A%20%20%5Cfrac%7B%5Csigma%20%7D%7B%5Csqrt%7Bn%7D%20%7D)
=> ![E =1.645 * \frac{5.15 }{\sqrt{8} }](https://tex.z-dn.net/?f=E%20%3D1.645%20%20%2A%20%20%5Cfrac%7B5.15%20%7D%7B%5Csqrt%7B8%7D%20%7D)
=> ![E = 2.995](https://tex.z-dn.net/?f=E%20%3D%20%202.995)
The 90% confidence interval is evaluated as
![\= x - E < \mu < \= x + E](https://tex.z-dn.net/?f=%5C%3D%20x%20%20-%20%20E%20%3C%20%5Cmu%20%3C%20%20%5C%3D%20x%20%2B%20%20E)
substituting values
![18.5 - 2.995 < \mu < 18.5 + 2.995](https://tex.z-dn.net/?f=18.5%20-%20%202.995%20%3C%20%5Cmu%20%3C%20%2018.5%20%2B%20%202.995)
![15.505 < \mu < 21.495](https://tex.z-dn.net/?f=15.505%20%3C%20%5Cmu%20%3C%20%2021.495)
considering part c
Given that the confidence level is 95% then the significance level is evaluated as
![\alpha = 100-95](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%20%20100-95)
![\alpha = 5\%](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%205%5C%25)
![\alpha = 0.05](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%200.05)
Next we obtain the critical value of
from the normal distribution table the value is
![Z_{\frac{ \alpha }{2} } = 1.96](https://tex.z-dn.net/?f=Z_%7B%5Cfrac%7B%20%5Calpha%20%7D%7B2%7D%20%7D%20%20%3D%20%201.96)
The margin of error is mathematically represented as
![E = Z_{\frac{ \alpha }{2} } * \frac{\sigma }{\sqrt{n} }](https://tex.z-dn.net/?f=E%20%3D%20%20Z_%7B%5Cfrac%7B%20%5Calpha%20%7D%7B2%7D%20%7D%20%2A%20%20%5Cfrac%7B%5Csigma%20%7D%7B%5Csqrt%7Bn%7D%20%7D)
=> ![E =1.96 * \frac{5.15 }{\sqrt{8} }](https://tex.z-dn.net/?f=E%20%3D1.96%20%20%2A%20%20%5Cfrac%7B5.15%20%7D%7B%5Csqrt%7B8%7D%20%7D)
=> ![E = 3.569](https://tex.z-dn.net/?f=E%20%3D%203.569)
The 95% confidence interval is evaluated as
![\= x - E < \mu < \= x + E](https://tex.z-dn.net/?f=%5C%3D%20x%20%20-%20%20E%20%3C%20%5Cmu%20%3C%20%20%5C%3D%20x%20%2B%20%20E)
substituting values
![18.5 - 3.569 < \mu < 18.5 + 3.569](https://tex.z-dn.net/?f=18.5%20-%203.569%20%3C%20%5Cmu%20%3C%20%2018.5%20%2B%20%203.569)
![14.93 < \mu < 22.069](https://tex.z-dn.net/?f=14.93%20%3C%20%5Cmu%20%3C%20%2022.069)