Answer:
x=8
Step-by-step explanation:
so since the whole thing should equal 180, and the right triangle is 90,
(3x+11)+(5x+15)=90 then solve for that
8x+26=90
8x=64
divide both sides by 8
so x=8
then plug in 8 for the xs so c is 3(8)+11 --> 24+11 so m<C=35*
m<D=90*
5(8)+15 40+15 so m<E=55
Answer:
dwgsfa
Step-by-step explanation:
Answer:
Step-by-step explanation:
17
Answer:
A) 12x + 10y
B) 118cm
Step-by-step explanation:
A) A fórmula para calcular o perímetro de um retângulo é dada como:
Perímetro de um retângulo = 2 (L + W)
= 2L + 2W
Onde
L = comprimento do retângulo
W = largura do retângulo
A) A pergunta nos diz que:
O comprimento de um retângulo é 6x e sua largura é 5y.
A expressão algébrica que representa o perímetro do retângulo =
Perímetro de um retângulo = 2 (L + W)
= 2L + 2W
L = 6x, W = 5y
= 2 (6x) + 2 (5y)
= 12x + 10y
A expressão algébrica que representa o perímetro do retângulo é
P = 12x + 10y
B) Se x = 4 cm e y = 7 cm, qual é o valor numérico desse perímetro.
P = 12x + 10y
x = 4cm
y = 7cm
Perímetro = 12 (4) + 10 (7)
Perímetro = 48cm + 70cm
Perímetro do retângulo = 118cm
Portanto, o valor numérico do perímetro é 118cm
<h3>
Answer: Choice D) 31.2 miles</h3>
This value is approximate.
============================================================
Explanation:
Let's focus on the 48 degree angle. This angle combines with angle ABC to form a 90 degree angle. This means angle ABC is 90-48 = 42 degrees. Or in short we can say angle B = 42 when focusing on triangle ABC.
Now let's move to the 17 degree angle. Add on the 90 degree angle and we can see that angle CAB, aka angle A, is 17+90 = 107 degrees.
Based on those two interior angles, angle C must be...
A+B+C = 180
107+42+C = 180
149+C = 180
C = 180-149
C = 31
----------------
To sum things up so far, we have these known properties of triangle ABC
- angle A = 107 degrees
- side c = side AB = 24 miles
- angle B = 42 degrees
- angle C = 31 degrees
Let's use the law of sines to find side b, which is opposite angle B. This will find the length of side AC (which is the distance from the storm to station A).
b/sin(B) = c/sin(C)
b/sin(42) = 24/sin(31)
b = sin(42)*24/sin(31)
b = 31.1804803080182 which is approximate
b = 31.2 miles is the distance from the storm to station A
Make sure your calculator is in degree mode.