You take the decimal of say .48 and pull the it back so it would be 48%
Lets x = the number of songs
The product of the number of songs and $0.99 = 0.99 times x = 0.99x
The product of the number of songs and $0.99 is $7.92:
=
0.99x = 7.92
Hope that helps.
Answer:
4
Step-by-step explanation:
444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444
Additive inverses add to zero. the additive inverse of any number is just that number multiplied by -1. the additive inverse -1.9 is+1.9 because when you add them the result is zero
Answer:
$643.50
Step-by-step explanation:
Let i be the profit realized from the sale and d be the discount made on the sale:
#John's selling price can be calculated by first adding profit, i to $450, the d to the new price as:
![P_n=P_o(1+i)+d[P_o(1+i)]\\=450(1+0.3)+0.1[450(1+0.3)]\\\\\\=450\times 1.3+0.1(450\times1.3)\\\\=585+58.5\\\\=643.50](https://tex.z-dn.net/?f=P_n%3DP_o%281%2Bi%29%2Bd%5BP_o%281%2Bi%29%5D%5C%5C%3D450%281%2B0.3%29%2B0.1%5B450%281%2B0.3%29%5D%5C%5C%5C%5C%5C%5C%3D450%5Ctimes%201.3%2B0.1%28450%5Ctimes1.3%29%5C%5C%5C%5C%3D585%2B58.5%5C%5C%5C%5C%3D643.50)
Hence, John will resell the bike at $643.50