Answer:
Step-by-step explanation:
We have the equations
4x + 3y = 18 where x = the side of the square and y = the side of the triangle
For the areas:
A = x^2 + √3y/2* y/2
A = x^2 + √3y^2/4
From the first equation x = (18 - 3y)/4
So substituting in the area equation:
A = [ (18 - 3y)/4]^2 + √3y^2/4
A = (18 - 3y)^2 / 16 + √3y^2/4
Now for maximum / minimum area the derivative = 0 so we have
A' = 1/16 * 2(18 - 3y) * -3 + 1/4 * 2√3 y = 0
-3/8 (18 - 3y) + √3 y /2 = 0
-27/4 + 9y/8 + √3y /2 = 0
-54 + 9y + 4√3y = 0
y = 54 / 15.93
= 3.39 metres
So x = (18-3(3.39) / 4 = 1.96.
This is a minimum value for x.
So the total length of wire the square for minimum total area is 4 * 1.96
= 7.84 m
There is no maximum area as the equation for the total area is a quadratic with a positive leading coefficient.
Since we have two possible pieces of information and 2 items to solve for, we know this is a system of equations.
Our first piece of information is that our shorter leg (s) is 2 feet shorter than our longer leg (l). This can be written as s=l-2.
Our second piece of information is that using the Pythagorean theorem that our shorter leg squared plus our longer leg squared is equal to our hypotenuse squared. This can be represented by s^2+l^2=10^2. Now we can solve.
We have already isolated for s in our first equation, so we can substitute l-2 in.
(l-2)^2+l^2=10^2
l-2+l=10
2l-2=10
2l=12
l=6
Now we can substitute in for s in our simpler equation
s=6-2
s=4
We now know that using our knowledge of systems of equations, the side lengths of this right angle triangle are 6 and 4.
Answer:
g = 23/16
Step-by-step explanation:
3/16 = (-5/4) + g
g = 5/4 + 3/16
g = 23/16
<u>Answer:</u>
24
<u>Step-by-step explanation:</u>
To find ƒ(6), we have to substitute x = 6 into the expression for ƒ(x):
ƒ(6) = (6)² - 2(6)
= 36 - 12
= 24