let's plug the value of x and y as 5 and 4 respectively to find the value of given expression :
Okay so CBE is a right angle which equals 90 degrees. CBD and DBE makes up CBE which is 23 degrees is part of CBD. So subtract CBE from CBD to get DBE which is 67 degrees.
The answer is 5.13 in²
Step 1. Calculate the diameter of the circle (d).
Step 2. Calculate the radius of the circle (r).
Step 3. Calculate the area of the circle (A1).
Step 4. Calculate the area of the square (A2).
Step 5. Calculate the difference between two areas (A1 - A2) and divide it by 4 (because there are total 4 segments) to get <span>the area of one segment formed by a square with sides of 6" inscribed in a circle.
</span>
Step 1:
The diameter (d) of the circle is actually the diagonal (D) of the square inscribed in the circle. The diagonal (D) of the square with side a is:
D = a√2 (ratio of 1:1:√2 means side a : side a : diagonal D = 1 : 1 : √2)
If a = 6 in, then D = 6√2 in.
d = D = 6√2 in
Step 2.
The radius (r) of the circle is half of its diameter (d):
r = d/2 = 6√2 / 2 = 3√2 in
Step 3.
The area of the circle (A1) is:
A = π * r²
A = 3.14 * (3√2)² = 3.14 * 3² * (√2)² = 3.14 * 9 * 2 = 56.52 in²
Step 4.
The area of the square (A2) is:
A2 = a²
A2 = 6² = 36 in²
Step 5:
(A1 - A2)/4 = (56.52 - 36)/4 = 20.52/4 = 5.13 in²
[x-(-10)]²+(y-6)²=4²
the answer is (<span>x + 10)^2 + (y – 6)^2 = 16</span>