Answer:

Step-by-step explanation:
Consider the revenue function given by
. We want to find the values of each of the variables such that the gradient( i.e the first partial derivatives of the function) is 0. Then, we have the following (the explicit calculations of both derivatives are omitted).


From the first equation, we get,
.If we replace that in the second equation, we get

From where we get that
. If we replace that in the first equation, we get

So, the critical point is
. We must check that it is a maximum. To do so, we will use the Hessian criteria. To do so, we must calculate the second derivatives and the crossed derivatives and check if the criteria is fulfilled in order for it to be a maximum. We get that


We have the following matrix,
.
Recall that the Hessian criteria says that, for the point to be a maximum, the determinant of the whole matrix should be positive and the element of the matrix that is in the upper left corner should be negative. Note that the determinant of the matrix is
and that -10<0. Hence, the criteria is fulfilled and the critical point is a maximum
The equation is derived from the conservation of energy, specifically from potential energy stored at a given height in a gravitational field.
When potential energy is completely converted to kinetic energy you have:
(mv^2)/2=mgh divide both sides by the mass m
v^2/2=gh multiply both sides by 2
v^2=2gh take the square root of both sides
v=√(2gh) and working with imperial units for acceleration due to gravity, g=-32ft/s^2
v=√(-64h) but the change of h as it falls is negative h so
v=-√(64h) so if an object falls from a height of 88ft we have:
v=-√(64*84)
v=-√5376
v≈-73.32 ft/sec (to the nearest hundredth of a foot per second)
Note that this is the velocity, it is negative 73.32 ft/sec.
The question inadvertently asked for velocity and provided answers for SPEED. Velocity is a vector and has both magnitude and direction, whereas speed just has magnitude.
So its final speed is 73.32 ft/sec
So if they actually wanted velocity none of their answers is correct :P
GCF - Greatest Common Factor
The numbers with a GCF of 2:
2 & 4, 2 & 8, 26 & 46...
LCM -Least Common Multiple
Numbers with an LCM of 60:
15 & 4, 12 & 5...
Hope it helps! :-)
Answered by

The independent variable would be the fixed rate of $3 because the amount for each mile driven changes based on how far they drive
Answer:
trust your instincts
Step-by-step explanation:
i will not let you decide your destiny on your own