1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kisachek [45]
4 years ago
13

(a) To wash her car, Melissa used 25 ? of water (b) Ivan's computer has a mass of 6 ? (c) The piece of paper was about 21 ? long

​
Mathematics
1 answer:
denpristay [2]4 years ago
8 0

Answer:

I do not understand the question please ask a question before sending that

You might be interested in
What is the maximum amount of baggage that may be loaded aboard the airplane for the cg to remain within the moment envelope? we
Korvikt [17]
<span>You are to find the maximum amount of baggage that may be loaded aboard the airplane for the cg (center of gravity) to remain within the moment envelope.

In order to solve this, there is a graph that shows the load weight and the load moment of pilot and front passenger, fuel, rear passenger and passenger including the baggage. Using the given data such as pilot and front passenger 250, the load moment is 9 lbs/in, for the rear passenger at 400lbs, the load moment is 28.5 lbs/in, the fuel at 30 gal has a load moment of 2 lbs/in and oil at 8 quarters is 15 lbs. The total weight is 1,350 + 250 + 400 + 15 is 2015 lbs.</span>
6 0
4 years ago
1000= 10×10= 100000= 100×10= 1000000= 10000×10=
Shalnov [3]
The answer for b is 100
7 0
3 years ago
Solve for x. Round to the nearest tenth, if necessary.
Ray Of Light [21]

Answer:

22.6

Step-by-step explanation:

because in this one you are using cos , adjacent/hypotenuse

24cos20

x = 22.552622899

3 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
A Candy contains 300 pieces of which 28% are wet how many pieces are red
Dmitrij [34]
I assumed you meant red instead of wet.

To calculate this, multiply 28% (which is the same as .28) times 300.

300 x .28 = 84
8 0
3 years ago
Other questions:
  • needs to be in long division and if someone could could they tell i how to do long division i forgot how
    14·1 answer
  • What's another way to write 9x200
    5·2 answers
  • Brady dropped a bouncy ball from a height of 64 feet. After the second bounce, the ball reached a height of 36 feet. write a rul
    12·1 answer
  • Can you please help me with 3b.
    8·1 answer
  • The function f(x) = –2(x – 10)(x – 200) represents a company's monthly profit as a function of the number of items sold, x. What
    14·1 answer
  • What comes after 4,16,36,64,100
    10·1 answer
  • -3/4v=6 solve for v
    14·2 answers
  • I NEED HELP ON THIS PLZ ASAP!!!
    5·1 answer
  • Why is Armin so precious?
    15·2 answers
  • The shape of nevada can be divided intoa rectangle and triangle ​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!