Answer:
- 3log(10) -2log(5) ≈ 1.60206
- no; rules of logs apply to any base. ln(x) ≈ 2.302585×log(x)
- no; the given "property" is nonsense
Step-by-step explanation:
<h3>1.</h3>
The given expression expression can be simplified to ...
3log(10) -2log(5) = log(10^3) -log(5^2) = log(1000) -log(25)
= log(1000/25) = log(40) . . . . ≠ log(5)
≈ 1.60206
Or, it can be evaluated directly:
= 3(1) -2(0.69897) = 3 -1.39794
= 1.60206
__
<h3>2.</h3>
The properties of logarithms apply to logarithms of any base. Natural logs and common logs are related by the change of base formula ...
ln(x) = log(x)/log(e) ≈ 2.302585·log(x)
__
<h3>3.</h3>
The given "property" is nonsense. There is no simplification for the product of logs of the same base. There is no expansion for the log of a sum. The formula for the log of a power does apply:

Numerical evaluation of Mr. Kim's expression would prove him wrong.
log(3)log(4) = (0.47712)(0.60206) = 0.28726
log(7) = 0.84510
0.28726 ≠ 0.84510
log(3)log(4) ≠ log(7)
Answer:
11 + 12 = 23
Step-by-step explanation:
Answer:
$33.60
Step-by-step explanation:
First, we get 60 percent of 84. That is 50.40. Next, we do 84 minus 50.40, which is 33.60. Therefore, your answer is $33.60. Hope this helped!
True. Because two even numbers weather you Add Subtract or Multiply them they will always be Even
Answer:
Inverse of f exists.
Step-by-step explanation:
From the graph attached,
If we do the horizontal line test for the function graphed,
We find the function as one to one function.
In other words for every input value (x-value) there is a different output value.
Since, for one-to-one functions, inverse of the functions exist.
Therefore, the answer will be,
The inverse of 'f' exists.