A nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously effect single and double stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of DNA repair. Defects in certain nucleases can cause genetic instability or immunodeficiency.[1] Nucleases are also extensively used in molecular cloning.[2]
Depiction of the restriction enzyme (endonuclease) HindIII cleaving a double-stranded DNA molecule at a valid restriction site (5'–A|AGCTT–3').
There are two primary classifications based on the locus of activity. Exonucleases digest nucleic acids from the ends. Endonucleases act on regions in the middle of target molecules. They are further subcategorized as deoxyribonucleases and ribonucleases. The former acts on DNA, the latter on RNA.[2]
Answer:
i would say the most realistic answer is, d. you can have a high self esteem and not be narcissistic.
Earth changes all the time, making it a <u>dynamic </u>planet.
I have encountered this question before, and the given diagram shows no producers. Moreover, it consists of pictures of five organisms, with no relationship being shown between them. Therefore, in order to make the model more accurate, Maria should add B. The sun and arrows to show the flow of energy.
Answer: RNAs are not processed before translation in prokaryotes, this process only takes place in eukaryotes.
Explanation:
Messenger RNA or mRNA is a single-straded ribonucleic acid that transfers the genetic information from the DNA (deoxyribonucleic acid) molecule of the cell nucleus to a ribosome (which are the machinery responsible for protein synthesis) in the cytoplasm. mRNA determines the order in which the amino acids of a protein will be joined and acts as a template or pattern for the synthesis of that protein. To accomplish this, the DNA molecule must be transcribed into an RNA molecule, which is used for protein synthesis.
The messenger RNA obtained after transcription is known as primary transcribed RNA or precursor RNA or pre-mRNA, which in most cases is not released from the transcription complex in a fully active form, but in eukaryotes it must undergo modifications before it can perform its function (RNA processing or maturation). These modifications include:
- Elimination of fragments (splicing): In most cases, the <u>mRNA undergoes the removal of internal, non-coding sequences called introns, and the connection of exons. This does not occur in prokaryotic cells</u>, as they do not have introns in their DNA.
- Protection by CAP: <u>Addition to the 5' end of the structure called "cap" or "capping"</u>, which is a modified guanine nucleotide, 7-methylguanosine triphosphate, via a 5'-5' triphosphate linkage, instead of the usual 3',5'-phosphodiester linkage. This cap is necessary for the normal RNA translation process and to maintain its stability.
- Polyadenylation signal: <u>Addition to the 3' end of a poly-A tail, a long polyadenylate sequence, whose bases are all adenine</u>. Its addition is mediated by a sequence or polyadenylation signal (AAAAAA), located 11-30 nucleotides upstream of the original 3' end. This tail protects the mRNA from degradation, and increases its half-life in the cytosol, so that more protein can be synthesized.
The mature mRNA (in eukaryotes) is transferred to the cytosol of the cell through pores in the nuclear envelope. Once in the cytoplasm, ribosomes are coupled to the mRNA. However, in prokaryotes, ribosome binding occurs while the mRNA strand is being synthesized. After a certain amount of time, the mRNA is degraded into its component nucleotides by ribonucleases. So, the transcription and translation processes are carried out in a similar way as in eukaryotic cells but they occur simultaneously. But, the fundamental difference is that, in prokaryotes, the messenger RNA does not undergo a maturation process and, therefore, no cap or tail is added and no introns are removed. Moreover, it does not have to leave the nucleus as in eukaryotes, because in prokaryotic cells there is no defined nucleus.
So, RNAs are not processed before translation in prokaryotes, this process only takes place in eukaryotes.