Answer:
if the signs are the sama, add the numbers
Answer:
5 is the answer of the equation
First, let's calculate the horizontal and vertical components of the wind speed (W) and the airplane speed (A), knowing that south is a bearing of 270° and northeast is a bearing of 45°:
![\begin{gathered} W_x=W\cos45°\\ \\ W_x=50\cdot0.707\\ \\ W_x=35.35\\ \\ \\ \\ W_y=W\sin45°\\ \\ W_y=50\cdot0.707\\ \\ W_y=35.35 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20W_x%3DW%5Ccos45%C2%B0%5C%5C%20%5C%5C%20W_x%3D50%5Ccdot0.707%5C%5C%20%5C%5C%20W_x%3D35.35%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20W_y%3DW%5Csin45%C2%B0%5C%5C%20%5C%5C%20W_y%3D50%5Ccdot0.707%5C%5C%20%5C%5C%20W_y%3D35.35%20%5Cend%7Bgathered%7D)
![\begin{gathered} A_x=A\cos270°\\ \\ A_x=540\cdot0\\ \\ A_x=0\\ \\ \\ \\ A_y=A\sin270°\\ \\ A_y=540\cdot(-1)\\ \\ A_y=-540 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A_x%3DA%5Ccos270%C2%B0%5C%5C%20%5C%5C%20A_x%3D540%5Ccdot0%5C%5C%20%5C%5C%20A_x%3D0%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20A_y%3DA%5Csin270%C2%B0%5C%5C%20%5C%5C%20A_y%3D540%5Ccdot%28-1%29%5C%5C%20%5C%5C%20A_y%3D-540%20%5Cend%7Bgathered%7D)
Now, let's add the components of the same direction:
![\begin{gathered} V_x=W_x+A_x=35.35+0=35.35\\ \\ V_y=W_y+A_y=35.35-540=-504.65 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20V_x%3DW_x%2BA_x%3D35.35%2B0%3D35.35%5C%5C%20%5C%5C%20V_y%3DW_y%2BA_y%3D35.35-540%3D-504.65%20%5Cend%7Bgathered%7D)
To find the resultant bearing (theta), we can use the formula below:
![\begin{gathered} \theta=\tan^{-1}(\frac{V_y}{V_x})\\ \\ \theta=\tan^{-1}(\frac{-504.65}{35.35})\\ \\ \theta=-86° \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctheta%3D%5Ctan%5E%7B-1%7D%28%5Cfrac%7BV_y%7D%7BV_x%7D%29%5C%5C%20%5C%5C%20%5Ctheta%3D%5Ctan%5E%7B-1%7D%28%5Cfrac%7B-504.65%7D%7B35.35%7D%29%5C%5C%20%5C%5C%20%5Ctheta%3D-86%C2%B0%20%5Cend%7Bgathered%7D)
The angle -86° is equivalent to -86 + 360 = 274°.
Therefore the correct option is b.
Answer:
multiply
Step-by-step explanation: