1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
3 years ago
10

Suppose the expected tensile strength of type-A steel is 103 ksi and the standard deviation of tensile strength is 7 ksi. For ty

pe-B steel, suppose the expected tensile strength and standard deviation of tensile strength are 105 ksi and 5 ksi, respectively. Let X^- = the sample average tensile strength of a random sample of 80 type-A specimens, and let Y^- = the sample average tensile strength of a random sample of 60 type-B specimens.
a. What is the approximate distribution of X^-? Of Y^-?
b. What is the approximate distribution of (X^-) - (Y^-)? Justify your answer.
c. Calculate (approximately) P(-1<_ X^- - Y^- <_1)
Mathematics
1 answer:
ExtremeBDS [4]3 years ago
3 0

Answer:

a

i So  the approximate distribution of \= X is \mu_{\= X} =103 and  \sigma_{\= X} = 0.783

ii So the approximate distribution of \= Y is \mu_{\= Y} =105 and  \sigma_{\= Y} = 0.645

b

 the approximate distribution of  \=X  - \= Y is E (\= X - \= Y)  = -2 and  \sigma_{\= X  - \=Y}=1.029

Here we can see that the mean of the approximate distribution is negative which tell us that this negative value of the  data for  \=X  - \= Y sample   are more and their frequency occurrence is higher than the positive values  

c

the value of  P(-1 \le \=X - \= Y  \le 1) is = -0.1639    

Step-by-step explanation:

From the question we are given that

       The expected tensile strength of the type A steel is  \mu_A = 103 ksi

        The standard deviation of type A steel is  \sigma_A = 7ksi

         The expected tensile strength of the type B steel is \mu_B = 105\ ksi

            The standard deviation of type B steel is  \sigma_B = 5 \ ksi

Also the assumptions are

       Let \= X be the sample average tensile strength of a random sample of 80 type-A specimens

Here n_a =80

      Let \= Y be  the sample average tensile strength of a random sample of 60 type-B specimens.

  Here n_b = 60

Let the sampling distribution of the mean be

             \mu _ {\= X} = \mu

                   =103

 Let the sampling distribution of the standard deviation be

               \sigma _{\= X} = \frac{\sigma }{\sqrt{n_a} }

                     = \frac{7}{\sqrt{80} }

                    =0.783

So What this mean is that the approximate distribution of \= X is \mu_{\= X} =103 and  \sigma_{\= X} = 0.783

For \= Y

 The sampling distribution of the sample mean is

               \mu_{\= Y} = \mu

                    = 105

  The sampling distribution of the standard deviation is

               \sigma _{\= Y} = \frac{\sigma }{\sqrt{n_b} }

                    = \frac{5}{\sqrt{60} }

                    = 0.645

So What this mean is that the approximate distribution of \= Y is \mu_{\= Y} =105 and  \sigma_{\= Y} = 0.645                      

Now to obtain the approximate distribution for \=X  - \= Y

               E (\= X - \= Y) = E (\= X) - E(\= Y)

                                =  \mu_{\= X} - \mu_{\= Y}

                                = 103 -105

                                = -2

The standard deviation of \=X  - \= Y is

               \sigma_{\= X  - \=Y} = \sqrt{\sigma_{\= X}^2 - \sigma_{\= Y}^2}

                         = \sqrt{(0.783)^2 + (0.645)^2}

                         =1.029

Now to find the value of  P(-1 \le \=X - \= Y  \le 1)

  Let us assume that F = \= X - \= Y

    P(-1 \le F \le 1) = P [\frac{-1 -E (F)}{\sigma_F} \le Z \le  \frac{1-E(F)}{\sigma_F} ]

                             = P[\frac{-1-(-2)}{1.029}  \le  Z \le  \frac{1-(-2)}{1.029} ]

                             =  P[0.972 \le Z \le 2.95]

                             = P(Z \le 0.972) - P(Z \le 2.95)

Using the z-table to obtain their z-score

                             = 0.8345 - 0.9984

                             = -0.1639

                   

You might be interested in
How many moles of oxygen are required to burn 3.0 mole of C10H8 (naphthalene)?
astra-53 [7]

Answer: 36 moles oxygen

Step-by-step explanation:

C10H8 + 12O2 ====》 10CO2 + 4H2O

From the equation of the reaction,

1 mole of napth requires 12 moles of O2

3 moles of napth would require x moles O2

X = (3 * 12) / 1

X = 36 moles of oxygen.

Therefore 3 moles of naphtalene (C10H8) would require 36 moles of oxygen

6 0
3 years ago
Simplify: √8x^5+ x√18x^3<br>÷x^2√50x​
Sergeu [11.5K]

Answer:

10x^2 √2x

Step-by-step explanation:

hope this helps

lmk if it's wrong

7 0
2 years ago
Ignore<br>bdwuqhaosjnkdascznckaszxk
larisa [96]

okkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

4 0
2 years ago
PLS HELP I NEED IT LIKE SUPER FAST
diamong [38]

Answer:

Not a full question

Step-by-step explanation:

Where’s the graph?

3 0
2 years ago
What three ratios are equivalent to 5 to 2
Hoochie [10]

Answer:

10:4, 15:6, 20:8

hope that helps.

5 0
3 years ago
Other questions:
  • Serena bought 4 packs of pencils and 12 notebooks
    11·2 answers
  • 13x−2=<br>  <br>  <br> −<br> 10<br> x<br> −<br> 2<br> −10x−2
    13·1 answer
  • a salesperson earns $320 per week plus 8% of her weekly sales. the expression representing her earning is 320 + 0.08x. which of
    8·2 answers
  • Use the equation v = h - 6 to find the value of v when h = 9.
    10·2 answers
  • What x what gives me 42 but when you add it it gives me 14
    6·1 answer
  • Write a fraction equivalent to 14/35
    7·1 answer
  • PLS HELP IM DESPERATE I GIVE 10 POINTS EACH PERSON
    11·1 answer
  • If cos A = 1/2, then what is the positive value of cos 1/2 A, in simplest radical form with a rational denominator?
    10·1 answer
  • Please help me ill give 20 points and mark brainliest
    8·1 answer
  • hurry xdd A store had apples on sale for $1.20 a pound. Joan spent $5.28 on apples. How many pounds did she buy?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!