Answer:
Sin X=Cos Y
Step-by-step explanation:
Objective: Understand trigonometric relations such that
Cosine and Sine are similar to complementary angles that if X+Y are complementary angles,
Cos X= Sin Y and Cos Y= Sin X
Answer:
See answer below
Step-by-step explanation:
The statement ‘x is an element of Y \X’ means, by definition of set difference, that "x is and element of Y and x is not an element of X", WIth the propositions given, we can rewrite this as "p∧¬q". Let us prove the identities given using the definitions of intersection, union, difference and complement. We will prove them by showing that the sets in both sides of the equation have the same elements.
i) x∈AnB if and only (if and only if means that both implications hold) x∈A and x∈B if and only if x∈A and x∉B^c (because B^c is the set of all elements that do not belong to X) if and only if x∈A\B^c. Then, if x∈AnB then x∈A\B^c, and if x∈A\B^c then x∈AnB. Thus both sets are equal.
ii) (I will abbreviate "if and only if" as "iff")
x∈A∪(B\A) iff x∈A or x∈B\A iff x∈A or x∈B and x∉A iff x∈A or x∈B (this is because if x∈B and x∈A then x∈A, so no elements are lost when we forget about the condition x∉A) iff x∈A∪B.
iii) x∈A\(B U C) iff x∈A and x∉B∪C iff x∈A and x∉B and x∉C (if x∈B or x∈C then x∈B∪C thus we cannot have any of those two options). iff x∈A and x∉B and x∈A and x∉C iff x∈(A\B) and x∈(A\B) iff x∈ (A\B) n (A\C).
iv) x∈A\(B ∩ C) iff x∈A and x∉B∩C iff x∈A and x∉B or x∉C (if x∈B and x∈C then x∈B∩C thus one of these two must be false) iff x∈A and x∉B or x∈A and x∉C iff x∈(A\B) or x∈(A\B) iff x∈ (A\B) ∪ (A\C).
Answer:
C. y<3
Step-by-step explanation:
We are required to determine the solution set of the inequality

Step 1: Add 9 to both sides

Step 2: Divide both sides by 15

The solution set of the given inequality is: y<3.
The correct option is C.