1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Len [333]
3 years ago
13

In Math

Mathematics
1 answer:
tiny-mole [99]3 years ago
6 0

Answer: Fraction of the trees will be Oak Willow or pine is given by

\frac{3}{5}

Step-by-step explanation:

Since we have given that

Part of the park department is Oak is given by

\frac{1}{10}

Part of the park department is Pine is given by

\frac{3}{10}

Part of the park department is Willow is given by

\frac{2}{10}

Total fraction of the trees will be Oak , Willow, Pine is given by

\frac{1}{10}+\frac{3}{10}+\frac{2}{10}\\\\=\frac{1+3+2}{10}\\\\=\frac{6}{10}\\\\=\frac{3}{5}

Hence, Fraction of the trees will be Oak Willow or pine is given by

\frac{3}{5}

You might be interested in
Anyone please help me
olga_2 [115]
Mark reads about 350 (D) wpm
Explanation:
700 words x 10 pages= 7000 words
7000 words/ 20 minutes
= 350 wpm
8 0
3 years ago
Read 2 more answers
los miembros de un club social se pueden agrupar en sin que ninguno quede suelto, por parejas, por trios y por grupos de 7. ¿ cu
mote1985 [20]

Answer:

El club tiene 84 miembros.

Step-by-step explanation:

El mínimo común múltiplo (mcm) es el número positivo más pequeño que es múltiplo de dos o más números. Es decir, el mínimo común múltiplo de dos números a y b es el número más pequeño que es múltiplo de a y múltiplo de b. Recordar que los múltiplos son el resultado de multiplicar un número por todos y cada uno de los números naturales.

Para calcular el mcm se descompone los números para escribirlos como un producto de números primos. Para descomponer un número se divide el número sucesivamente entre números primos hasta llegar a 1.  La descomposición es el producto de las potencias de los números primos, siendo sus exponentes el número de veces que se ha dividido por dicho primo.

El mínimo común múltiplo se obtiene escogiendo todos los factores (comunes y no comunes), elevados a la máxima potencia. Es decir eliges todos los factores, pero los que se repitan serán elevados a la máxima potencia.

En este caso, los miembros de un club social se pueden agrupar, sin que ninguno quede suelto, por parejas, por tríos y por grupos de 7. Para calcular la cantidad de miembros que tiene el club, entonces debes calcular el mcm entre los números 2,3 y 7

No podemos descomponer los números como producto de primos porque ya son números primos., por lo que el mínimo común múltiplo es el producto de comunes y no comunes al mayor exponente:

mcm (2,3,7)= 2*3*7= 42

Pero sabes que los miembros son más de 80 pero menos de 90, por lo que calculas un múltiplo del mcm obtenido.

Múltiplo de 42= 2*42= 84

<u><em>El club tiene 84 miembros.</em></u>

5 0
3 years ago
the half life of c14 is 5730 years. Suppose that wood found at an archeological excavation site contains about 35% as much C14 a
Furkat [3]

Answer:

The wood was cut approximately 8679 years ago.

Step-by-step explanation:

At first we assume that examination occured in 2020. The decay of radioactive isotopes are represented by the following ordinary differential equation:

\frac{dm}{dt} = -\frac{m}{\tau} (Eq. 1)

Where:

\frac{dm}{dt} - First derivative of mass in time, measured in miligrams per year.

\tau - Time constant, measured in years.

m - Mass of the radioactive isotope, measured in miligrams.

Now we obtain the solution of this differential equation:

\int {\frac{dm}{m} } = -\frac{1}{\tau}\int dt

\ln m = -\frac{1}{\tau} + C

m(t) = m_{o}\cdot e^{-\frac{t}{\tau} } (Eq. 2)

Where:

m_{o} - Initial mass of isotope, measured in miligrams.

t - Time, measured in years.

And time is cleared within the equation:

t = -\tau \cdot \ln \left[\frac{m(t)}{m_{o}} \right]

Then, time constant can be found as a function of half-life:

\tau = \frac{t_{1/2}}{\ln 2} (Eq. 3)

If we know that t_{1/2} = 5730\,yr and \frac{m(t)}{m_{o}} = 0.35, then:

\tau = \frac{5730\,yr}{\ln 2}

\tau \approx 8266.643\,yr

t = -(8266.643\,yr)\cdot \ln 0.35

t \approx 8678.505\,yr

The wood was cut approximately 8679 years ago.

5 0
3 years ago
Simplify. 9x^8-18x^6
GrogVix [38]
You cannot simplify this but you can factorise it:

9x^6 (x^2 - 2)
7 0
3 years ago
Which ordered pair satisfies the system of equations shown below? (10 POINTS + BRAINLIEST ANSWER)
nasty-shy [4]
The answer would be D.
 you would start by choosing one of the variables to eliminate, i chose to eliminate X first. in order to eliminate X, i had to multiply the second equation by -2. X then cancelled out, and i solved for the Y the same way you would a 1 step equation. Y=-4
I then took the first original equations, plugged Y in, and solved for X. X=3.

Hope this helps!
7 0
3 years ago
Other questions:
  • Find the value of x. Then find the angle measures of the polygon. ​
    14·2 answers
  • If the conversion rate for Swiss francs is 1.68 francs = 1 U.S. dollar, then how many Swiss francs can be exchanged for $79.00 i
    13·1 answer
  • Which sequence can be generated from the formula f(x + 1) =1/2 (f(x))?
    14·2 answers
  • When you multiply two prime numbers together the answer is always an odd number?
    5·1 answer
  • WITH ANSWER
    8·1 answer
  • A. Sin(30°)
    14·1 answer
  • Consider the graphs of the functions f(x) and g(x)...
    6·1 answer
  • What is the cost of each item? What is the subtotal? What is the tax? What is the total paid? Shoes: $49.99 (normally) they are
    7·1 answer
  • Two sides of a triangle have the following measures. Find the range of possible measures for the third side.
    6·1 answer
  • Can someone help me out with this problem
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!