<h3>
Answer: 5</h3>
=========================================================
Explanation:
Vertex form is
y = a(x-h)^2 + k
We are told the vertex is (3,-2), so we know (h,k) = (3,-2)
y = a(x-h)^2 + k will update to y = a(x-3)^2 - 2
--------
Then we also know that (x,y) = (4,3) is a point on the parabola. Plug those x and y values into the equation and solve for 'a'
y = a(x-3)^2 - 2
3 = a(4-3)^2 - 2
3 = a(1)^2 - 2
3 = a - 2
3+2 = a
5 = a
a = 5
This is the coefficient of the x^2 term since the standard form is y = ax^2+bx+c.
Answer:
3rd answer down
Step-by-step explanation:
ok so you take the median of all the #'s which turns out to be 126.5 and that is where your bar should point to in the box, then you should start with 105, and your last bit of the line should end at 150, the start of your box should start at the median of 105 and 117, and the end of your box should stop at the median of 145 and 150.
To find the range of these scores, we must take the largest scores and subtract the smallest from it.
The largest score is 99, and the smallest score is 80.
99 - 80 = 19
Answer:
try symnolab it helps a lot with math but the answer is 29/1000 0r 0.029
Step-by-step explanation: Hopes this helps :)