The money in the Felix's account will be $6798 when he is 21.
<u>Step-by-step explanation:</u>
It is given that,
- The amount deposited is $2000.
- The account earns 6% compound interest.
- It is compounded annually for 21 years.
<u>To find the money in Felix's account after 21 years :</u>
The formula used here is,
⇒ 
where A is the amount after 21 years.
- P is the initial amount deposited ⇒ P = 2000
- r is the rate ⇒ r = 0.06
- n is the number of times interest is compounded per year⇒ n = 1
- t is the time period ⇒ t = 21
⇒ 
⇒ 
⇒ 
⇒ 
Therefore, The money in the Felix's account will be $6798 when he is 21.
Answer:
Step-by-step explanation:
hello :
answer C the odd and positif function
well, let's first notice, all our dimensions or measures must be using the same unit, so could convert the height to liters or the liters to centimeters, well hmm let's convert the volume of 1000 litres to cubic centimeters, keeping in mind that there are 1000 cm³ in 1 litre.
well, 1000 * 1000 = 1,000,000 cm³, so that's 1000 litres.
![\textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=1000000~cm^3\\ h=224~cm \end{cases}\implies \stackrel{cm^3}{1000000}=\pi r^2(\stackrel{cm}{224}) \\\\\\ \cfrac{1000000}{224\pi }=r^2\implies \sqrt{\cfrac{1000000}{224\pi }}=r\implies \cfrac{1000}{\sqrt{224\pi }}=r\implies \stackrel{cm}{37.7}\approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%5C%5C%5C%5C%20V%3D%5Cpi%20r%5E2%20h~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D1000000~cm%5E3%5C%5C%20h%3D224~cm%20%5Cend%7Bcases%7D%5Cimplies%20%5Cstackrel%7Bcm%5E3%7D%7B1000000%7D%3D%5Cpi%20r%5E2%28%5Cstackrel%7Bcm%7D%7B224%7D%29%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%3Dr%5E2%5Cimplies%20%5Csqrt%7B%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Ccfrac%7B1000%7D%7B%5Csqrt%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B37.7%7D%5Capprox%20r)
now, we could have included the "cm³ and cm" units for the volume as well as the height in the calculations, and their simplication will have been just the "cm" anyway.
Answer:
the kit can produce 99*89*105*74 = 68,461,470 faces
Step-by-step explanation:
Hope this helps : )
A. 37/100
b. 736. 3300/160 is 20.215
20.215x37 =
736. hope this helped