Your method is completely correct. The first term will be 6 and each subsequent term can be obtained by adding 6 to the previous one, meaning the common difference is 6. The number of terms is given by the highest number that is divisible by 6 and dividing it by 6; that is 996/6 = 166
Then we simply apply the formula for arithmetic sequence sum:
S = n/2 [2a₁ + (n - 1)d]
S = 166/2 [ 2(6) + (166 - 1)6]
S = 83,166
Volume= 125cm cubed
Total Surface area=150 cm squared
Answer:
D
Step-by-step explanation:
∠ABC= ∠DBE (vert. opp. ∠s)
(6x -7)°= (4x +23)°
6x -7= 4x +23
<em>Being</em><em> </em><em>x</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>1</em><em> </em><em>side</em><em>,</em><em> </em><em>constant</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>other</em><em>:</em>
6x -4x= 23 +7
<em>Simplify</em><em>:</em>
2x= 30
<em>Divide</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>by</em><em> </em><em>2</em><em>:</em>
x= 15
<em>Substituting</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em>:</em>
m∠ABC
= 6(15) -7
= 83
Answer:
z = 5*(1/2)
z = 5/10
---
time switching classes:
w = 7/10
---
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (76/10 - 5/10 - 7/10)/6
x = (76 - 5 - 7)/(10*6)
x = (64)/(10*6)
x = (2*2*2*2*2*2)/(2*5*2*3)
x = (2*2*2*2)/(5*3)
x = 16/15
x = 1.0666666666
---
check:
y = 7 + 3/5
y = 7.6
z = 1/2
z = 0.5
w = 7/10
w = 0.7
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (7.6 - 0.5 - 0.7)/6
x = 1.0666666666
---
answer:
z = 5*(1/2)
z = 5/10
---
time switching classes:
w = 7/10
---
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (76/10 - 5/10 - 7/10)/6
x = (76 - 5 - 7)/(10*6)
x = (64)/(10*6)
x = (2*2*2*2*2*2)/(2*5*2*3)
x = (2*2*2*2)/(5*3)
x = 16/15
x = 1.0666666666
---
check:
y = 7 + 3/5
y = 7.6
z = 1/2
z = 0.5
w = 7/10
w = 0.7
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (7.6 - 0.5 - 0.7)/6
x = 1.0666666666
---
answer:
each class is 1.07 hours
Step-by-step explanation: