Since segments ST and PQ are parallel, triangles SRT and PRQ are similar due to the AAA postulate. In general, the ratio between the corresponding sides of two similar triangles is constant; therefore,

Furthermore,

Finding PR and RS,

Then,


Solving for PS,

Solve the quadratic equation in terms of PS, as shown below
![\begin{gathered} \Rightarrow PS^2+16PS-132=0 \\ \Rightarrow PS=\frac{-16\pm\sqrt[]{16^2-4(-132)}}{2}=\frac{-16\pm28}{2} \\ \Rightarrow PS=-22,6 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5CRightarrow%20PS%5E2%2B16PS-132%3D0%20%5C%5C%20%5CRightarrow%20PS%3D%5Cfrac%7B-16%5Cpm%5Csqrt%5B%5D%7B16%5E2-4%28-132%29%7D%7D%7B2%7D%3D%5Cfrac%7B-16%5Cpm28%7D%7B2%7D%20%5C%5C%20%5CRightarrow%20PS%3D-22%2C6%20%5Cend%7Bgathered%7D)
And PS is a segment; therefore, it has to be positive.
Hence, the answer is PS=6
Answer:
4 units to the right & 1 unit up.
Answer:
8.125% is the answer
Step-by-step explanation:
steps in picture, to help you better understand