It is always necessary to analyze research for bias
Answer:
RNAs and proteins can bind via electrostatic interactions, hydrophobic interactions, Hydrogen bonding interactions and base stacking interactions
Explanation:
Proteins bind to nucleic acids (i.e., both DNA and RNA) through different types of interactions:
- electrostatic interactions, also known as van der Waals interactions, refer to attractive/repulsive interactions between molecules depending on their electric charges.
- hydrophobic interactions, i.e., interactions between nonpolar molecules and water molecules
- Hydrogen bonding interactions resulting from the interaction between a hydrogen (H) atom that bind to an electronegative atom (e.g., N, O, F, etc), and another electronegative atom.
- base stacking interactions that result from the arrangement of RNA nucleotides
In this case, it is also important to highlight that the interaction will depend on the specific tertiary structure of ribosomal proteins and ribosomal RNAs (rRNAs).
Answer: Natural selection is one of the forces of evolution and the enviroment where the species lives is the selection agent. For example, suppose a mosquitoes population in a environment free from insecticides, in this environment there's a high frequency of non-resistant mosquitoes because the environment is not exerting any pressure on the resistence trait. But when the environment changes and we use a insecticide upon the mosquitoes population, the populations changes because the non-resistant ones die but those resistant survive and beggin to reproduce more effectively. That's natural selection, differences in survival and reproduction between individuals with different phenotypes (traits) and this differences depend of environmental changes.
Answer:
<em>The competitive inhibitor binds to the active site and prevents the substrate from binding there.</em>
Explanation:
The noncompetitive inhibitor binds to a different site on the enzyme; it doesn't block substrate binding, but it causes other changes in the enzyme so that it can no longer catalyze the reaction efficiently.
Answer:
Enzymes allow many chemical reactions to occur within the homeostasis constraints of a living system. Enzymes function as organic catalysts. ... By bringing the reactants closer together, chemical bonds may be weakened and reactions will proceed faster than without the catalyst.
Explanation: