Answer:
r = 2161.9 m
Explanation:
Aerodynamic lift(L) is perpendicular to the wing, which is tilted 40 degrees to the horizontal.
Since the plane is moving in a horizontal circle, the vertical component of the lift must cancel the weight W of the airplane, but the horizontal component is the centripetal force that keeps it in a circle.
L is perpendicular to wing at angle θ with respect to horizontal
Thus,
Vertical component of lift is:
L cosθ = W = mg
Thus, m = L cosθ / g - - - - (eq1)
Horizontal component of lift is:
L sinθ = centripetal force = mv² / r - - - - (eq2)
Combining equations 1 and 2,we have;
L sinθ = (L cosθ / g)(v² / r)
L cancels out on both sides to give;
tanθ = v²/ rg
r = v² / (g tanθ)
We are given;
velocity; v = 480 km/hr = 480 x 10/36 = 133.33 m/s
r = 133.33²/[(9.8) tan(40)] = 2161.9 m
According to the Law of Conservation of Energy, energy is neither created nor destroyed. They are just transferred from one system to another. To obey this law, the energy of the substances inside the container must be equal to the substance added to it. The energy is in the form of heat. There can be two types of heat energy: latent heat and sensible heat. Sensible heat is energy added or removed when a substance changes in temperature. Latent heat is the energy added or removed at a constant temperature during a phase change. Since there is no mention of phase change, we assume the heat involved here is sensible heat. The equation for sensible heat is:
H = mCpΔT
where
m is the mass of the substance
Cp is the specific heat of a certain type of material or substance
ΔT is the change in temperature.
So the law of conservation of heat tells that:
Sensible heat of Z + Sensible heat of container = Sensible heat of X
Since we have no idea what these substances are, there is no way of knowing the Cp. We can't proceed with the calculations. So, we can only assume that in the duration of 15 minutes, the whole system achieves equilibrium. Therefore, the equilibrium temperature of the system is equal to 32°C. The answer is C.
Answer:
I'm pretty sure it's 20m/s because 1300m divided by 65 seconds is 20 so I think it's 20m/s
Explanation:
Answer:
Differences between freefall and weightlessness are as follows:
<h3>
<u>Freefall</u></h3>
- When a body falls only under the influence of gravity, it is called free fall.
- Freefall is not possible in absence of gravity.
- A body falling in a vacuum is an example of free fall.
<h3>
<u>Weightlessness</u></h3>
- Weightlessness is a condition at which the apparent weight of body becomes zero.
- Weightlessness is possible in absence of gravity.
- A man in a free falling lift is an example of weightlessness.
Hope this helps....
Good luck on your assignment....