Answer:40
Step-by-step explanation:
When considering similar triangles, we need congruent angles and proportional sides.
Hence
"Angles B and B' are congruent, and angles C and C' are congruent." is sufficient to prove similarity of two triangles.
"Segments AC and A'C' are congruent, and segments BC and B'C' are congruent." does not prove anything because we know nothing about the angles.
"Angle C=C', angle B=B', and segments BC and B'C' are congruent." would prove ABC is congruent to A'B'C' if and only if AB is congruent to A'B' (not just proportional).
"<span>Segment BC=B'C', segment AC=A'C', and angles B and B' are congruent</span>" is not sufficient to prove similarity nor congruence because SSA is not generally sufficient.
To conclude, the first option is sufficient to prove similarity (AAA)
Answer:
True
Step-by-step explanation:
A six sigma level has a lower and upper specification limits between
and
. It means that the probability of finding no defects in a process is, considering 12 significant figures, for values symmetrically covered for standard deviations from the mean of a normal distribution:

For those with defects <em>operating at a 6 sigma level, </em>the probability is:

Similarly, for finding <em>no defects</em> in a 5 sigma level, we have:
.
The probability of defects is:

Well, the defects present in a six sigma level and a five sigma level are, respectively:
Then, comparing both fractions, we can confirm that a <em>6 sigma level is markedly different when it comes to the number of defects present:</em>
[1]
[2]
Comparing [1] and [2], a six sigma process has <em>2 defects per billion</em> opportunities, whereas a five sigma process has <em>600 defects per billion</em> opportunities.
1. 3n
2. 9x
3. 9wx
4. 5ac^2
5. 8wx^2
6. 4a^2 c