Answer: 10.78
Step-by-step explanation:
Answer: Solving for f. Want to solve for x instead?
1 Remove parentheses.
f\times -2fx=3{x}^{2}-8x+7f×−2fx=3x
2
−8x+7
2 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
-{f}^{2}\times 2x=3{x}^{2}-8x+7−f
2
×2x=3x
2
−8x+7
3 Regroup terms.
-2{f}^{2}x=3{x}^{2}-8x+7−2f
2
x=3x
2
−8x+7
4 Divide both sides by -2−2.
{f}^{2}x=-\frac{3{x}^{2}-8x+7}{2}f
2
x=−
2
3x
2
−8x+7
5 Divide both sides by xx.
{f}^{2}=-\frac{\frac{3{x}^{2}-8x+7}{2}}{x}f
2
=−
x
2
3x
2
−8x+7
6 Simplify \frac{\frac{3{x}^{2}-8x+7}{2}}{x}
x
2
3x
2
−8x+7
to \frac{3{x}^{2}-8x+7}{2x}
2x
3x
2
−8x+7
.
{f}^{2}=-\frac{3{x}^{2}-8x+7}{2x}f
2
=−
2x
3x
2
−8x+7
7 Take the square root of both sides.
f=\pm \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}f=±√
−
2x
3x
2
−8x+7
8 Simplify \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}√
−
2x
3x
2
−8x+7
to \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imath√
2x
3x
2
−8x+7
ı.
f=\pm \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imathf=±√
2x
3x
2
−8x+7
ı
9 Regroup terms.
f=\pm \imath \sqrt{\frac{3{x}^{2}-8x+7}{2x}}f=±ı√
2x
3x
2
−8x+7
Done- :)
f=±ı√ 2x 3x 2 −8x+7
Step-by-step explanation
Answer:
24
Step-by-step explanation:
Area of parallelograms is :
A = b x h
The height must be a line perpendicular to the base.
The slant measuring 5 is not perpendicular to the base.
A = 6 x 4
A = 24
1 mile * (1 hr / 4 mile) = 1/4 hr
1/4 hr = 15 min
Answer:
15
Step-by-step explanation:
5:22=15:66, simply multiply 3 in the right hand side