There would be no solution.
Answer:
(y1-y2)/(x1-x2)
Step-by-step explanation:
if you have two points from the graph then you can use them to find the slope, for example:
(2,3) and (0,5)
you would take the first point and put it in a fraction (and the second point) but the x goes on the bottom and the y goes on the top:
3/2 and 5/0
Next you put them together minusing one of the equations, but make sure that the two coordinates line up (it doesn't matter which one, in the order):
3-5/2-0
Then you solve:
-2/2
-1
which means that -1 is the slope for this
(the "/" is a fraction bar, in case you didn't already know that)
The first step is to determine the distance between the points, (1,1) and (7,9)
We would find this distance by applying the formula shown below
![\begin{gathered} \text{Distance = }\sqrt[]{(x2-x1)^2+(y2-y1)^2} \\ \text{From the graph, } \\ x1\text{ = 1, y1 = 1} \\ x2\text{ = 7, y2 = 9} \\ \text{Distance = }\sqrt[]{(7-1)^2+(9-1)^2} \\ \text{Distance = }\sqrt[]{6^2+8^2}\text{ = }\sqrt[]{100} \\ \text{Distance = 10} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%28x2-x1%29%5E2%2B%28y2-y1%29%5E2%7D%20%5C%5C%20%5Ctext%7BFrom%20the%20graph%2C%20%7D%20%5C%5C%20x1%5Ctext%7B%20%3D%201%2C%20y1%20%3D%201%7D%20%5C%5C%20x2%5Ctext%7B%20%3D%207%2C%20y2%20%3D%209%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%287-1%29%5E2%2B%289-1%29%5E2%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B6%5E2%2B8%5E2%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%2010%7D%20%5Cend%7Bgathered%7D)
Distance = 10 units
If one unit is 70 meters, then the distance between both entrances is
70 * 10 = 700 meters