Assumptions:
1. Equilibrium has been reached for the allele proportions
2. Absence of <span>evolutionary influences such as </span>mate choice<span>, </span>mutation<span>, </span>selection<span>, </span>genetic drift<span>, </span>gene flow<span> and </span>meiotic drive<span>.
</span>
Defining L=long stem, l=short stem, and L is dominant over l.
f(x) = frequency of allele x (expressed as a fraction of population)
Then the Hardy-Weinberg equilibrium law applies:
p^2+2pq+q^2=1
where
f(LL)=p^2
f(Ll)=2pq
f(ll)=q^2
Given f(ll)=0.35=q^2, we have
q=sqrt(0.35)=0.591608
p=1-q=0.408392
=>
f(Ll)
=2pq
=2*0.408392*0.591608=0.483216
= proportion of heterozygous population
Answer: percentage of heterozygous population is 48.32%
Maybe because they like coacervates.
Answer:
Glucose, for your regular cellular respiration
Explanation:
The start of celllular respiration is glycolysis breaking down glucose. It usually is glucose, but lipids, carbohydrates, and proteins can be used too.
They are both known to be heavy, hydrogen is one of the two stable isotopes of deuterium