1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
3 years ago
12

The volume of a right rectangular prism is found by multiplying the length of the base by the width of the base by the height of

the prism. A right rectangular prism has a volume of 30 cubic inches. If the height of the prism is 6 inches, what is the area of the base of the prism?
A. 5 square inches
B. 24 square inches
C. 36 square inches
D. 180 square inches
Mathematics
1 answer:
sukhopar [10]3 years ago
7 0

Answer:

5 in^2.

Step-by-step explanation:

Volume = area of the base * height

30 = area of the base * 6

area of the base = 30/6 = 5 in^2.

You might be interested in
If the perimeter of a square is 5 feet now many Inches long is each side of the square
gogolik [260]

Answer:

Well since we know that the perimeter of a square is four times the length of one of its sides. We just have to divide 5 by 4 to get the length of one side:

5feet /4 sides = 1.25 feet

And to finish off, we have to convert feet to inches:

1 foot      = 12 inches

1.25 feet    x inches

x inches = 12 inches x 1.25 feet ÷ 1 foot

x inches = 15 inches

Therefore, each side is 15 inches long.

Hope this helps!

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Order the set of numbers from least to greatest<br><br>3/5, 3/10, 2/7, 1/4
Mkey [24]
3/10 2/7 1/4 3/5 that is least to greatest
8 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Write expressions for the following scenarios.
elena-s [515]

Answer:

flaimgo/albert

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
A square napkin is folded in half on the diagonal and placed on the diameter of a round plate (see diagram below). If the folded
Crank

Answer:

A=81(\pi-1)\ in^2

Step-by-step explanation:

step 1

Find the area of the plate

The area of a circle is given by the formula

A=\pi r^{2}

we have

r=18/2=9\ in ---> the radius is half the diameter

substitute

A=\pi (9)^{2}\\A=81\pi\ in^2

step 2

Find the area of the square napkin folded (is a half of the area of the square napkin)

we know that

The diagonal of the square is the same that the diameter of the plate

Applying Pythagorean theorem

D^2=2b^2

where

b is the length side of the square

we have

D=18\ in

substitute

18^2=2b^2

solve for b^2

b^2=162\ in^2 -----> is the area of the square

Divide by 2

162/2=81\ in^2

step 3

Find the area of the space on the plate that is NOT covered by the napkin

we know that

The  area of the space on the plate that is NOT covered by the napkin, is equal to subtract the area of the square napkin folded (is a half of the area of the square napkin) from the area of the plate

so

A=(81\pi-81)\ in^2

simplify

A=81(\pi-1)\ in^2

8 0
3 years ago
Other questions:
  • 12 ft equal how many inches​
    9·1 answer
  • Simplify 2(5x -y)-3(3x-y)
    13·1 answer
  • Can someone plzz help me
    14·1 answer
  • -2(21/4)+-2(13/4) what is the answer
    8·2 answers
  • What is the slope-intercept form of the function described by this table?
    9·1 answer
  • What is the answer to c divided by 16 = 5,
    9·1 answer
  • Find the slope of each line that is graphed.​
    5·2 answers
  • Help help help pls pls ASAP​
    5·2 answers
  • PLEASE HELP i will mark u brainliest
    11·1 answer
  • Find the values for x so that the perimeter of this rectangle is no greater than 60 centimeters. 25 cm x cm Find the allowed val
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!