We know that
[area of a regular hexagon]=6*[area of one <span>equilateral triangle]
</span>210.44=6*[area of one equilateral triangle]
[area of one equilateral triangle]=210.44/6-----> 35.07 cm²
[area of one equilateral triangle]=b*h/2
h=7.794 cm
b=2*area/h------> b=2*35.07/7.794------>b= 9 cm
the length side of a regular hexagon is 9 cm
<span>applying the Pythagorean theorem
</span>r²=h²+(b/2)²------>r²=7.794²+(4.5)²------> r²=81--------> r=9 cm
<span>this last step was not necessary because the radius is equal to the hexagon side------> (remember the equilateral triangles)
</span>
the answer is
the radius is 9 cm
We can express this number in the standard form, which is simply 15xyz+10xy+5x. Alternatively, we can factor a 5 or an x out, receiving 5(3xyz+2xy+x) or x(15yz+10y+5). However, the most effective factorization is to factor out 5x, for a result of 5x(3yz+2y+1).