The total moment of inertia of the two disks will be I = 2.375 × 10-³ Kgm² welded together to form one unit.
<h3>What is moment of inertia?</h3>
Moment of inertia is the quantity expressing a body's tendency to resist angular acceleration, which is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation.
Using the formulas to calculate the moment of inertia of a solid cylinder:
I = ½MR²
Where;
I = moment (kgm²)
M = mass of object (Kg)
R = radius of object (m)
Total moment of inertia of the two disks is expressed as: I = I(1) + I(2)
That is;
I = ½M1R1 + ½M2R2
According to the provided information;
R1 = 2.50cm = 0.025m
M1 = 0.800kg
R2 = 5.00cm = 0.05m
M2 = 1.70kg
I = (½ × 0.800 × 0.025²) + (½ × 0.05² × 1.70)
I = (½ × 0.0005) + (½ × 0.00425)
I = (0.00025) + (0.002125)
I = 0.002375
I = 2.375 × 10-³ Kgm²
Hence The total moment of inertia of the two disks will be I = 2.375 × 10-³ Kgm² welded together to form one unit.
To know more about moment of inertia follow
brainly.com/question/14460640
#SPJ4
Answer:
Hey there!
Perimeter: 24
Area: 24
36+64=x^2
x=10
Perimeter: 10+6+8=24
Area: 1/2bh, 1/2(48)=24
Both the area and perimeter are 24.
Hope this helps :)
Answer:
x=-1
Step-by-step explanation:
<em><u>An inequality that shows the distance Johnathan could of ran any day this week is:</u></em>

<em><u>Solution:</u></em>
Let "x" be the distance Johnathan can run any day of this week
Given that,
Johnathan ran 5 days this week. The most he ran in one day was 3.5 miles
Therefore,
Number of days ran = 5
The most he ran in 1 day = 3.5 miles
Thus, the maximum distance he ran in a week is given as:

The maximum distance he ran in a week is 17.5 miles
If we let x be the distance he can run any day of this week then, we get a inequality as:

If we let y be the total distance he can travel in a week then, we may express it as,
