Let
![R](https://tex.z-dn.net/?f=R)
be the solid. Then the volume is
![\displaystyle\iiint_R\mathrm dV=\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=\sqrt8}\int_{\zeta=r^2}^{\zeta=\sqrt{72-r^2}}r\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciiint_R%5Cmathrm%20dV%3D%5Cint_%7B%5Ctheta%3D0%7D%5E%7B%5Ctheta%3D2%5Cpi%7D%5Cint_%7Br%3D0%7D%5E%7Br%3D%5Csqrt8%7D%5Cint_%7B%5Czeta%3Dr%5E2%7D%5E%7B%5Czeta%3D%5Csqrt%7B72-r%5E2%7D%7Dr%5C%2C%5Cmathrm%20d%5Czeta%5C%2C%5Cmathrm%20dr%5C%2C%5Cmathrm%20d%5Ctheta)
which follows from the facts that
![\begin{cases}x=r\cos\theta\\y=r\sin\theta\\z=\zeta\end{cases}\implies\mathrm dx\,\mathrm dy\,\mathrm dz=r\,\mathrm dr\,\mathrm d\theta\,\mathrm d\zeta](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dx%3Dr%5Ccos%5Ctheta%5C%5Cy%3Dr%5Csin%5Ctheta%5C%5Cz%3D%5Czeta%5Cend%7Bcases%7D%5Cimplies%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20dz%3Dr%5C%2C%5Cmathrm%20dr%5C%2C%5Cmathrm%20d%5Ctheta%5C%2C%5Cmathrm%20d%5Czeta)
(by computing the Jacobian)
and
![z=x^2+y^2=r^2\implies z+z^2=72\implies z=-9\text{ or }z=8](https://tex.z-dn.net/?f=z%3Dx%5E2%2By%5E2%3Dr%5E2%5Cimplies%20z%2Bz%5E2%3D72%5Cimplies%20z%3D-9%5Ctext%7B%20or%20%7Dz%3D8)
(we take the positive solution, since it's clear that
![R](https://tex.z-dn.net/?f=R)
lies above the
![x](https://tex.z-dn.net/?f=x)
-
![y](https://tex.z-dn.net/?f=y)
plane)
![r^2+z^2=72\implies z=\pm\sqrt{72-r^2}](https://tex.z-dn.net/?f=r%5E2%2Bz%5E2%3D72%5Cimplies%20z%3D%5Cpm%5Csqrt%7B72-r%5E2%7D)
(again, taking the positive root for the same reason)
![z=r^2\implies 8=r^2\implies r=\sqrt8](https://tex.z-dn.net/?f=z%3Dr%5E2%5Cimplies%208%3Dr%5E2%5Cimplies%20r%3D%5Csqrt8)
![\displaystyle\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=\sqrt8}\int_{\zeta=r^2}^{\zeta=\sqrt{72-r^2}}r\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_%7B%5Ctheta%3D0%7D%5E%7B%5Ctheta%3D2%5Cpi%7D%5Cint_%7Br%3D0%7D%5E%7Br%3D%5Csqrt8%7D%5Cint_%7B%5Czeta%3Dr%5E2%7D%5E%7B%5Czeta%3D%5Csqrt%7B72-r%5E2%7D%7Dr%5C%2C%5Cmathrm%20d%5Czeta%5C%2C%5Cmathrm%20dr%5C%2C%5Cmathrm%20d%5Ctheta)
![=\displaystyle2\pi\int_{r=0}^{r=\sqrt8}\int_{\zeta=r^2}^{\zeta=\sqrt{72-r^2}}r\,\mathrm d\zeta\,\mathrm dr](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle2%5Cpi%5Cint_%7Br%3D0%7D%5E%7Br%3D%5Csqrt8%7D%5Cint_%7B%5Czeta%3Dr%5E2%7D%5E%7B%5Czeta%3D%5Csqrt%7B72-r%5E2%7D%7Dr%5C%2C%5Cmathrm%20d%5Czeta%5C%2C%5Cmathrm%20dr)
![=\displaystyle2\pi\int_{r=0}^{r=\sqrt8}r(\sqrt{72-r^2}-r^2)\,\mathrm dr](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle2%5Cpi%5Cint_%7Br%3D0%7D%5E%7Br%3D%5Csqrt8%7Dr%28%5Csqrt%7B72-r%5E2%7D-r%5E2%29%5C%2C%5Cmathrm%20dr)
![=\displaystyle2\pi\int_{r=0}^{r=\sqrt8}(r\sqrt{72-r^2}-r^3)\,\mathrm dr](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle2%5Cpi%5Cint_%7Br%3D0%7D%5E%7Br%3D%5Csqrt8%7D%28r%5Csqrt%7B72-r%5E2%7D-r%5E3%29%5C%2C%5Cmathrm%20dr)
Answer:
Step-by-step explanation:ok so if you want too do the the root symbl on what
Monthly amount, M = $102×4 = $408.
Also, yearly amount, Y = M×12 = $408×12 = $4896
It is given that 25% of the cost is contributed by Marcus.
Amount Marcus paid
![=\dfrac{\$4896 \times 25 }{100}\\\\= \$1224](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B%5C%244896%20%5Ctimes%2025%20%7D%7B100%7D%5C%5C%5C%5C%3D%20%5C%241224)
Therefore, his employer contribution annually for coverage is $( 4896 - 1224)=$3672.
Hence, this is the required solution.
Answer:
Step-by-step explanation:
U EAT CHCIKEN AND GET RLLY RLY FAT :)
67 meters because if you use the triangle congruent method with the altitude at 65 degrees you should get the right answer